16
Views
89
CrossRef citations to date
0
Altmetric
Research Article

A New Member of the IκB Protein Family, IκBε, Inhibits RelA (p65)-Mediated NF-κB Transcription

&
Pages 6184-6190 | Received 21 Mar 1997, Accepted 30 Jul 1997, Published online: 29 Mar 2023

REFERENCES

  • Altomonte, M., C. Pucillo, G. Damante, and M. Maio. 1993. Cross-linking of HLA class II antigens modulates the release of tumor necrosis factor-alpha by the EBV-B lymphoblastoid cell line JY. J. Immunol. 151:5115–5122.
  • Baeuerle, P. A., and D. Baltimore. 1996. NF-nB: ten years after. Cell 87:13–20.
  • Baldi, L., K. Brown, G. Franzoso, and U. Siebenlist. 1996. Critical role for lysines 21 and 22 in signal-induced, ubiquitin-mediated proteolysis of InB-a. J. Biol. Chem. 271:376–379.
  • Baldwin, A. S., Jr. 1996. The NF-nB and InB proteins: new discoveries and insights. Annu. Rev. Immunol. 14:649–681.
  • Barroga, C. F., J. K. Stevenson, E. M. Schwarz, and I. M. Verma. 1995. Constitutive phosphorylation of InBa by casein kinase II. Proc. Natl. Acad. Sci. USA 92:7637–7641.
  • Beg, A. A., and A. S. Baldwin, Jr. 1993. The InB proteins: multifunctional regulators of Rel/NF-nB transcription factors. Genes Dev. 7:2064–2070.
  • Beg, A. A., S. M. Ruben, R. I. Scheinman, S. Haskill, C. A. Rosen, and A. S. Baldwin, Jr. 1992. InB interacts with the nuclear localization sequences of the subunits of NF-nB: a mechanism for cytoplasmic retention. Genes Dev. 6:1899–1913.
  • Betts, J. C., and G. J. Nabel. 1996. Differential regulation of NF-nB2(p100) processing and control by amino-terminal sequences. Mol. Cell. Biol. 16:6363–6371.
  • Brockman, J. A., D. C. Scherer, T. A. McKinsey, S. M. Hall, X. Qi, W. Y. Lee, and D. W. Ballard. 1995. Coupling of a signal response domain in InBa to multiple pathways for NF-nB activation. Mol. Cell. Biol. 15:2809–2818.
  • Brown, K., G. Franzoso, L. Baldi, L. Carlson, L. Mills, Y. Lin, S. Gerstberger, and U. Siebenlist. 1997. The signal response of InBa is regulated by transferable N- and C-terminal domains. Mol. Cell. Biol. 17:3021–3027.
  • Brown, K., S. Gerstberger, L. Carlson, G. Franzoso, and U. Siebenlist. 1995. Control of InB-a proteolysis by site-specific, signal-induced phosphorylation. Science 267:1485–1488.
  • Brown, K., S. Park, T. Kanno, G. Franzoso, and U. Siebenlist. 1993. Mutual regulation of the transcription activator NF-nB and its inhibitor InB-a. Proc. Natl. Acad. Sci. USA 90:2532–2536.
  • Chen, Z., J. Hagler, V. J. Palombella, F. Melandri, D. Scherer, D. Ballard, and T. Maniatis. 1995. Signal-induced site-specific phosphorylation targets InBa to the ubiquitin-proteasome pathway. Genes Dev. 9:1586–1597.
  • Chen, Z. J., L. Parent, and T. Maniatis. 1996. Site-specific phosphorylation of InBa by a novel ubiquitination-dependent protein kinase activity. Cell 84:853–862.
  • Chiao, P. J., S. Miyamoto, and I. M. Verma. 1994. Autoregulation of InB-a activity. Proc. Natl. Acad. Sci. USA 91:28–32.
  • Chu, Z., T. A. McKinsey, L. Liu, X. Qi, and D. W. Ballard. 1996. Basal phosphorylation of the PEST domain in InBþ regulates its functional interaction with the c-rel proto-oncogene product. Mol. Cell. Biol. 16:5974–5984.
  • DiDonato, J., F. Mercurio, C. Rosette, J. Wu-Li, H. Suyang, S. Ghosh, and M. Karin. 1996. Mapping of the inducible InB phosphorylation sites that signal its ubiquitination and degradation. Mol. Cell. Biol. 16:1295–1304.
  • DiDonato, J. A., F. Mercurio, and M. Karin. 1995. Phosphorylation of InBa precedes but is not sufficient for its dissociation from NF-nB. Mol. Cell. Biol. 15:1302–1311.
  • Duckett, C. S., N. D. Perkins, T. F. Kowalik, R. M. Schmid, E.-S. Huang, A. S. Baldwin, Jr., and G. J. Nabel. 1993. Dimerization of NF-KB2 with RelA(p65) regulates DNA binding, transcriptional activation, and inhibition by an InB-a (MAD-3). Mol. Cell. Biol. 13:1315–1322.
  • Finco, T. S., A. A. Beg, and A. S. Baldwin, Jr. 1994. Inducible phosphorylation of InBa is not sufficient for its dissociation from NF-nB and is inhibited by protease inhibitors. Proc. Natl. Acad. Sci. USA 91:11884–11888.
  • Freimuth, W. W., J. M. Depper, and G. J. Nabel. 1989. Regulation of the IL-2 receptor a-gene: interaction of a nB binding protein with cell-specific transcription factors. J. Immunol. 143:3064–3068.
  • Haskill, S., A. A. Beg, S. M. Tompkins, J. S. Morris, A. D. Yurochko, A. Sampson-Johannes, K. Mondal, P. Ralph, and A. S. Baldwin, Jr. 1991. Characterization of an immediate-early gene induced in adherent monocytes that encodes InB-like activity. Cell 65:1281–1289.
  • Lee, F. S., J. Hagler, Z. J. Chen, and T. Maniatis. 1997. Activation of the InBa kinase complex by MEKK1, a kinase of the JNK pathway. Cell 88:213–222.
  • Leung, K., and G. J. Nabel. 1988. HTLV-I transactivator induces interleukin-2 receptor expression through an NF-nB-like factor. Nature 333:776–778.
  • Lin, L., and S. Ghosh. 1996. A glycine-rich region in NF-nB p105 functions as a processing signal for the generation of the p50 subunit. Mol. Cell. Biol. 16:2248–2254.
  • Lin, R., P. Beauparlant, C. Makris, S. Meloche, and J. Hiscott. 1996. Phosphorylation of InBa in the C-terminal PEST domain by casein kinase II affects intrinsic protein stability. Mol. Cell. Biol. 16:1401–1409.
  • Lin, Y., K. Brown, and U. Siebenlist. 1995. Activation of NF-nB requires proteolysis of the inhibitor InB-a: signal induced phosphorylation of InB-a alone does not release active NF-nB. Proc. Natl. Acad. Sci. USA 92:552–556.
  • Liou, H. C., G. P. Nolan, S. Ghosh, T. Fujita, and D. Baltimore. 1992. The NF-kappa B p50 precursor, p105, contains an internal I kappa B-like inhibitor that preferentially inhibits p50. EMBO J. 11:3003–3009.
  • McElhinny, J. A., S. A. Trushin, G. D. Bren, N. Chester, and C. V. Paya. 1996. Casein kinase II phosphorylates InBa at S-283, S-289, S-293, and T-291 and is required for its degradation. Mol. Cell. Biol. 16:899–906.
  • McKinsey, T. A., J. A. Brockman, D. C. Scherer, S. W. Al-Murrani, P. L. Green, and D. W. Ballard. 1996. Inactivation of InBþ by the Tax protein of human T-cell leukemia virus type 1: a potential mechanism for constitutive induction of NF-nB. Mol. Cell. Biol. 16:2083–2090.
  • Miyamoto, S., M. Maki, M. J. Schmitt, M. Hatanaka, and I. M. Verma. 1994. Tumor necrosis factor alpha-induced phosphorylation of InB-a is a signal for its degradation but not dissociation from NF-nB. Proc. Natl. Acad. Sci. USA 91:12740–12744.
  • Miyamoto, S., and I. M. Verma. 1995. Rel/NF-nB/InB story. Adv. Cancer Res. 66:255–292.
  • Palombella, V. J., O. J. Rando, A. L. Goldberg, and T. Maniatis. 1994. The ubiquitin-proteasome pathway is required for processing the NF-nB1 precursor protein and the activation of NF-nB. Cell 78:773–785.
  • Perkins, N. D., A. B. Agranoff, E. Pascal, and G. J. Nabel. 1994. An interaction between the DNA-binding domains of RelA(p65) and Sp1 mediates human immunodeficiency virus gene activation. Mol. Cell. Biol. 14:6570–6583.
  • Perkins, N. D., N. L. Edwards, C. S. Duckett, A. B. Agranoff, R. M. Schmid, and G. J. Nabel. 1993. A cooperative interaction between NF-nB and Sp1 is required for HIV-1 enhancer activation. EMBO J. 12:3551–3558.
  • Schwarz, E. M., D. Van Antwerp, and I. M. Verma. 1996. Constitutive phosphorylation of InBa by casein kinase II occurs preferentially at serine 293: requirement for degradation of free InBa. Mol. Cell. Biol. 16:3554–3559.
  • Siebenlist, U. 1997. NFnB/InB proteins: their role in cell growth, differentation, and development. Biochim. Biophys. Acta 1332:7–13.
  • Siebenlist, U., G. Franzoso, and K. Brown. 1994. Structure, regulation and function of NF-nB. Annu. Rev. Cell. Biol. 10:405–455.
  • Sun, S.-C., J. Elwood, and W. C. Greene. 1996. Both amino- and carboxylterminal sequences within InBa regulate its inducible degradation. Mol. Cell. Biol. 16:1058–1065.
  • Sun, S.-C., P. A. Ganchi, D. W. Ballard, and W. C. Greene. 1993. NF-kappa B controls expression of inhibitor I kappa B alpha: evidence of an inducible autoregulatory pathway. Science 259:1912–1915.
  • Suyang, H., R. Phillips, I. Douglas, and S. Ghosh. 1996. Role of unphosphorylated, newly synthesized InBþ in persistent activation of NF-nB. Mol. Cell. Biol. 16:5444–5449.
  • Ten, R. M., C. V. Paya, N. Israel, O. LeBail, M. G. Mattei, J. L. Virelizier, P. Kourilsky, and A. Israel. 1992. The characterization of the promoter of the gene encoding the p50 subunit of NF-kappa B indicates that it participates in its own regulation. EMBO J. 11:195–203.
  • Teng, J. M., X. R. Liu, G. B. Mills, and B. Dupont. 1996. CD28-mediated cytotoxicity by the human leukemic NK cell line YT involves tyrosine phosphorylation, activation of phosphatidylinositol 3-kinase, and protein kinase C. J. Immunol. 156:3222–3232.
  • Thompson, J. E., R. J. Phillips, H. Erdjument-Bromage, P. Tempst, and S. Ghosh. 1995. InB-þ regulates the persistent response in a biphasic activation of NF-nB. Cell 80:573–582.
  • Traenckner, E. B., H. L. Pahl, T. Henkel, K. N. Schmidt, S. Wilk, and P. A. Baeuerle. 1995. Phosphorylation of human IkB-a on serines 32 and 36 controls InB-a proteolysis and NF-nB activation in response to diverse stimuli. EMBO J. 14:2876–2883.
  • Verma, I. M., J. K. Stevenson, E. M. Schwarz, D. Van Antwerp, and S. Miyamoto. 1995. Rel/NF-nB/InB family: intimate tales of association and dissociation. Genes Dev. 9:2723–2735.
  • Wei, M. X., J. C. Moulin, G. Decaussin, F. Berger, and T. Ooka. 1994. Expression and tumorigenicity of the Epstein-Barr virus BARF1 gene in human Louckes B-lymphocyte cell line. Cancer Res. 54:1843–1848.
  • Whiteside, S. T., J. Epinat, N. R. Rice, and A. Israel. 1997. I kappa B epsilon, a novel member of the InB family, controls RelA and cRel NF-nB activity. EMBO J. 16:1413–1426.
  • Wu, B., C. Woffendin, C. S. Duckett, T. Ohno, and G. J. Nabel. 1995. Regulation of human retroviral latency by the NF-nB/InB family: inhibition of human immunodeficiency virus replication by InB through a Rev-dependent mechanism. Proc. Natl. Acad. Sci. USA 92:1480–1484.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.