8
Views
155
CrossRef citations to date
0
Altmetric
Research Article

Role for ADA/GCN5 Products in Antagonizing Chromatin-Mediated Transcriptional Repression

&
Pages 6212-6222 | Received 17 Mar 1997, Accepted 31 Jul 1997, Published online: 29 Mar 2023

REFERENCES

  • Allan, J., N. Harborne, D. C. Rau, and H. Gould. 1982. Participation of core histone “tails” in the stabilization of the chromatin solenoid. J. Cell Biol. 93:285–297.
  • Andrews, B., and I. Herskowitz. 1989. Identification of a DNA binding factor involved in cell-cycle control of the yeast HO gene. Cell 57:21–29.
  • Ashrof, S., and C. L. Peterson. Unpublished results.
  • Ausio, J., F. Dong, and K. E. van Holde. 1989. Use of selectively trypsinized nucleosome core particles to analyze the role of the histone “tails” in the stabilization of the nucleosome. J. Mol. Biol. 206:451–464.
  • Barlev, N. A., R. Candau, L. Wang, P. Darpino, N. Silverman, and S. L. Berger. 1995. Characterization of physical interactions of the putative transcriptional adaptor, ADA2, with acidic activation domains and TATA-binding protein. J. Biol. Chem. 270:19337–19344.
  • Berger, S. L., B. Pina, N. Silverman, G. A. Marcus, J. Agapite, J. L. Regier, S. J. Triezenberg, and L. Guarente. 1992. Genetic isolation of ADA2: a potential transcriptional activator required for function of certain acidic activation domains. Cell 70:251–265.
  • Berger, S. L., W. D. Cress, A. Cress, S. J. Triezenberg, and L. Guarente. 1990. Selective inhibition of activated but not basal transcription by the acidic activation domain of VP16: evidence for transcriptional adaptors. Cell 61:1199–1208.
  • Brandl, C. J., A. M. Furlanetto, J. A. Martens, and K. S. Hamilton. 1993. Characterization of NGG1, a novel yeast gene required for glucose repression of GAL4p-regulated transcription. EMBO J. 12:5255–5265.
  • Breeden, L., and K. Nasmyth. 1987. Cell cycle control of the yeast HO gene: cis- and trans-acting regulators. Cell 48:389–397.
  • Brownell, J. E., and C. D. Allis. 1995. An activity gel assay detects a single, catalytically active histone acetyltransferase subunit in Tetrahymena macronuclei. Proc. Natl. Acad. Sci. USA 92:6364–6368.
  • Brownell, J. E., J. Zhou, T. Ranalli, R. Kobayashi, D. G. Edmonson, S. Y. Roth, and C. D. Allis. 1996. Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell 84:843–851.
  • Cairns, B., and R. Kornberg. Personal communication.
  • Cairns, B. R., R. S. Levinson, K. R. Yamamoto, and R. D. Kornberg. 1996. Essential role of Swp73p in the function of yeast Swi/Snf complex. Genes Dev. 10:2131–2144.
  • Cairns, B. R., Y. J. Kim, M. H. Sayre, B. C. Laurent, and R. D. Kornberg. 1994. A multisubunit complex containing the SWI1/ADR6, SWI2/SNF2, SWI3, SNF5, and SNF6 gene products isolated from yeast. Proc. Natl. Acad. Sci. USA 91:1950–1954.
  • Celenza, J. L., and M. Carlson. 1984. Cloning and genetic mapping of SNF11, a gene required for expression of glucose-repressible genes in Saccharomyces cerevisiae. Mol. Cell. Biol. 4:49–53.
  • Chiang, Y. C., P. Komarnitsky, D. Chase, and C. L. Denis. 1996. ADR1 activation of domains contact the histone acetyltransferase GCN5 and the core transcriptional factor TFIIB. J. Biol. Chem. 271:32359–32365.
  • Cote, J., J. Quinn, J. Workman, and C. L. Peterson. 1994. Stimulation of GAL4 derivative binding to nucleosomal DNA by the yeast SWI/SNF protein complex. Science 265:53–60.
  • Cote, J., J. Workman, and S. Berger. Personal communication.
  • Dallas, P. B., P. Yaciuk, and E. Moran. 1997. Characterization of monoclonal antibodies raised against p300: both p300 and CBP are present in intracellular TBP complexes. J. Virol. 71:1726–1731.
  • Edmonson, D. G., M. M. Smith, and S. Y. Roth. 1996. Repression domain of the yeast global repressor Tup1 interacts directly with histones H3 and H4. Genes Dev. 10:1247–1259.
  • Fletcher, T. M., and J. C. Hansen. 1996. The nucleosomal array: structure/ function relationships. Crit. Rev. Eukaryot. Gene Expr. 6:149–188.
  • Garcia-Ramirez, M., F. Dong, and J. Ausio. 1992. Role of the histone “tails” in the folding of oligonucleosomes depleted of histone H1. J. Biol. Chem. 267:19587–19595.
  • Geitz, R. D., and R. H. Scheistl. 1991. Applications of high efficiency lithium acetate transformation of intact yeast cells using single stranded nucleic acids as carrier. Yeast 7:253–263.
  • Georgakopoulos, T., and G. Thireos. 1992. Two distinct yeast transcriptionalactivators require the function of the GCN5 protein to promote normal levels of transcription. EMBO J. 11:4145–4152.
  • Grunstein, M. 1990. Histone function in transcription. Annu. Rev. Cell Biol. 6:643–678.
  • Guthrie, C., and G. R. Fink. 1991. Guide to yeast genetics and molecular biology. Methods Enzymol. 194:1–933.
  • Han, M., U.-J. Kim, P. Kayne, and M. Grunstein. 1988. Depletion of histone H4 and nucleosomes activates the PHO5 gene in Saccharomyces cerevisiae. EMBO J. 7:2221–2228.
  • Hansen, J. C. The core histone amino-termini: combinatorial interaction domains that link chromatin structure with function. ChemTracts Biochem. Mol. Biol., in press.
  • Hansen, J. C., J. Ausio, V. H. Stanik, and K. E. van Holde. 1989. Homogeneous reconstituted oligonucleosomes, evidence for salt-dependent folding in the absence of histone H1. Biochemistry 28:9129–9136.
  • Happel, A. M., M. S. Swanson, and F. Winston. 1991. The SNF2, SNF5, and SNF6 genes are required for Ty transcription in Saccharomyces cerevisiae. Genetics 128:69–77.
  • Hecht, A., T. Laroche, S. Strahl-Bolsinger, S. M. Gasser, and M. Grunstein. 1995. Histone H3 and H4 N-termini interact with SIR3 and SIR4 proteins: a molecular model for the formation of heterochromatin in yeast. Cell 80:583–592.
  • Henriksson, A., T. Almlof, J. Ford, I. J. McEwan, J. Gustafsson, and A. P. H. Wright. 1997. Role of the Ada adaptor complex in gene activation by the glucocorticoid receptor. Mol. Cell. Biol. 17:3065–3073.
  • Hirschhorn, J. N., S. A. Brown, C. D. Clark, and F. Winston. 1992. Evidence that SNF2/SWI2 and SNF5 activate transcription in yeast by altering chromatin structure. Genes Dev. 6:2288–2298.
  • Horiuchi, J., N. Silverman, G. A. Marcus, and L. Guarente. 1995. ADA3, a putative transcriptional adaptor, consists of two separable domains and interacts with ADA2 and GCN5 in a trimeric complex. Mol. Cell. Biol. 15:1203–1209.
  • Horz, W. Personal communication.
  • Imbalzano, A. N., H. Kwon, M. R. Green, and R. E. Kingston. 1994. Facilitated binding of TATA-binding protein to nucleosomal DNA. Nature 370:481–485.
  • Jiang, Y. W., and D. J. Stillman. 1995. Regulation of HIS4 expression by the Saccharomyces cerevisiae SIN4 transcriptional regulator. Genetics 140:103–114.
  • Kemphues, K. J., E. C. Raff, and T. C. Kaufman. 1983. Genetic analysis of b2t, the structural gene for a testis-specific b-tubulin subunit in Drosophila melanogaster. Genetics 104:345–356.
  • Kemphues, K. J., T. C. Kaufman, R. A. Raff, and E. C. Raff. 1982. The testis-specific b-tubulin subunit in Drosophila melanogaster has multiple functions in spermatogenesis. Cell 31:655–670.
  • Kruger, W., C. L. Peterson, A. Sil, C. Coburn, G. Arents, E. N. Moundri-anakis, and I. Herskowitz. 1995. Amino acid substitutions in the structured domains of histones H3 and H4 partially relieve the requirement of the yeast SWI/SNF complex for transcription. Genes Dev. 9:2770–2779.
  • Kruger, W., and I. Herskowitz. 1991. A negative regulator of HO transcription, SIN1 (SPT2), is a nonspecific DNA-binding protein related to HMG1. Mol. Cell. Biol. 11:4135–4146.
  • Kuo, M., J. E. Brownell, R. E. Sobel, T. A. Ranalli, R. G. Cook, D. G. Edmonson, S. Y. Roth, and C. D. Allis. 1996. Transcription-linked acetylation by Gcn5p of histones H3 and H4 at specific lysines. Nature 383:269–272.
  • Kwon, H., A. N. Imbalzano, P. A. Khavari, R. E. Kingston, and M. R. Green. 1994. Nucleosome disruption and enhancement of activator binding by a human SWI/SNF complex. Nature 370:477–481.
  • Marcus, G. A., N. Silverman, S. A. Berger, J. Horiuchi, and L. Guarente. 1994. Functional similarity and physical association between GCN5 and ADA2: putative transcriptional adaptors. EMBO J. 13:4807–4815.
  • Melcher, K., and S. A. Johnston. 1995. GAL4 interacts with TATA-binding protein and coactivators. Mol. Cell. Biol. 15:2839–2848.
  • Miller, M. E., B. R. Cairns, R. S. Levinson, K. R. Yamamoto, D. A. Engel, and M. M. Smith. 1996. Adenovirus E1A specifically blocks SWI/SNF-dependent transcriptional activation. Mol. Cell. Biol. 16:5737–5743.
  • Muchardt, C., J. C. Reyes, B. Bourachot, E. Legoy, and M. Yaniv. 1996. The hbrm and BRG-1 proteins, components of the human SWI/SNF complex, are phosphorylated and excluded from the condensed chromosomes during mitosis. EMBO J. 15:3394–3402.
  • Nasmyth, K. Personal communication.
  • Neigeborn, L., and M. Carlson. 1984. Genes affecting the regulation of SUC2 gene expression by glucose repression in Saccharomyces cerevisiae. Genetics 108:845–858.
  • Paranjape, S. M., R. T. Kamakaka, and J. T. Kadonaga. 1994. Role of chromatin structure in the regulation of transcription by RNA polymerase II. Annu. Rev. Biochem. 63:265–297.
  • Peterson, C. L., and I. Herskowitz. 1992. Characterization of the yeast SWI1, SWI2, and SWI3 genes, which encode a global activator of transcription. Cell 68:573–583.
  • Peterson, C. L., A. Dingwall, and M. P. Scott. 1994. Five SWI/SNF gene products are components of a large multi-subunit complex required for transcriptional enhancement. Proc. Natl. Acad. Sci. USA 91:2905–2908.
  • Peterson, C. L., W. Kruger, and I. Herskowitz. 1991. A Functional interaction between the C-terminal domain of RNA polymerase II and the negative regulator SIN1. Cell 64:1135–1143.
  • Peterson, C. L., and J. W. Tamkun. 1995. The SWI/SNF complex: a chromatin remodeling machine? Trends Biochem. Sci. 20:143–146.
  • Pham, T. A., Y.-P. Hwung, D. P. McDonnell, and B. W. O’Malley. 1991. Transactivation functions facilitate the disruption of chromatin structure by estrogen receptor derivitives in vivo. J. Biol. Chem. 266:18179–18187.
  • Pina, B., S. Berger, G. A. Marcus, N. Silverman, J. Agapite, and L. Guarente. 1993. ADA3: a gene, identified by resistance to GAL4-VP16, with properties similar to and different from those of ADA2. Mol. Cell. Biol. 13:5981–5989.
  • Pollard, K. Unpublished results.
  • Prelich, G., and F. Winston. 1993. Mutations that suppress the deletion of an upstream activating sequence in yeast: involvement of a protein kinase and histone H3 in repressing transcription in vivo. Genetics 135:665–676.
  • Quinn, J., A. M. Fyrberg, R. W. Ganster, M. C. Schmidt, and C. L. Peterson. 1996. DNA-binding properties of the yeast SWI/SNF complex. Nature 379:844–847.
  • Quinn, J., and C. L. Peterson. Unpublished results.
  • Rose, M. D., P. Novick, J. H. Thomas, D. Botstein, and G. R. Fink. 1987. A Saccharomyces cerevisiae genomic bank based on a centromere-containing shuttle vector. Gene 60:237–243.
  • Rundlett, S. E., A. A. Carmen, R. Kobayashi, S. Bavykin, B. M. Turner, and M. Grunstein. 1996. HDA1 and RPD3 are members of distinct yeast histone deacetylase complexes that regulate silencing and transcription. Proc. Natl. Acad. Sci. USA 93:14503–14508.
  • Saleh, A., V. Lang, R. Cook, and C. J. Brandl. 1997. Identification of native complexes containing the yeast coactivator/repressor proteins NGG1/ADA3 and ADA2. J. Biol. Chem. 272:5571–5578.
  • Silverman, N., J. Agapite, and L. Guarente. 1994. Yeast ADA2 protein binds to the VP16 protein activation domain and activates transcription. Proc. Natl. Acad. Sci. USA 91:11665–11668.
  • Steinberg, R. A., and D. A. Agard. 1981. Turnover of regulatory subunit of cyclic AMP-dependent protein kinase in S49 mouse lymphoma cells. J. Biol. Chem. 256:10731–10734.
  • Stern, M., R. Jensen, and I. Herskowitz. 1984. Five SWI/SNF genes are required for expression of the HO gene in yeast. J. Mol. Biol. 178:853–868.
  • Sterner, R., G. Vidali, R. L. Heinrikson, and V. G. Alfrey. 1978. Postsynthetic modification of high mobility group proteins. J. Biol. Chem. 253:7601–7604.
  • Stillman, D. J., S. Dorland, and Y. Yu. 1994. Epistasis analysis of suppressor mutations that allow HO expression in the absence of the yeast SWI5 transcriptional activator. Genetics 136:781–788.
  • Treich, I., B. R. Cairns, T. D. L. Santos, E. Brewster, and M. Carlson. 1995. SNF11, a new component of the yeast SNF-SWI complex that interacts with a conserved region of SWI2. Mol. Cell. Biol. 15:4240–4248.
  • Wechser, M. A., M. P. Kladde, J. A. Alfieri, and C. L. Peterson. Effects of Sin2 versions of histone H4 on yeast chromatin structure and function. EMBO J., in press.
  • Wolffe, A. P., and D. Pruss. 1996. Targeting chromatin disruption: transcription regulators that acetylate histones. Cell 84:817–819.
  • Wong, L.-J. C., D. J. Sharpe, and S. S. Wong. 1991. High-mobility group and other nonhistone substrates for nuclear histone N-acetyltransferase. Biochem. Genet. 29:461–475.
  • Workman, J. L., I. C. A. Taylor, and R. E. Kingston. 1991. Activation domains of stably bound GAL4 derivative alleviate repression of promoters by nucleosomes. Cell 64:533–544.
  • Yang, X.-J., V. V. Ogryzko, J. Nishikawa, B. H. Howard, and Y. Nakatani. 1996. A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A. Nature 382:319–324.
  • Yoshinaga, S. K., C. L. Peterson, I. Herskowitz, and K. Yamamoto. 1992. Roles of SWI1, SWI2, and SWI3 proteins for transcriptional enhancement by steroid receptors. Science 258:1598–1604.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.