10
Views
156
CrossRef citations to date
0
Altmetric
Research Article

A Homolog of Mammalian, Voltage-Gated Calcium Channels Mediates Yeast Pheromone-Stimulated Ca2+ Uptake and Exacerbates the cdc1(Ts) Growth Defect

&
Pages 6339-6347 | Received 29 May 1997, Accepted 08 Aug 1997, Published online: 29 Mar 2023

REFERENCES

  • Beeler, T., K. Gable, C. Zhao, and T. Dunn. 1994. A novel protein, CSG2p, is required for Ca2+ regulation in Saccharomyces cerevisiae. J. Biol. Chem. 10:7279–7284.
  • Casadaban, M. J., A. Martinez-Arias, S. K. Shapiro, and J. Chou. 1983. b-Galactosidase gene fusions for analyzing gene expression in Escherichia coli and yeast. Methods Enzymol. 100:293–308.
  • Catterall, W. A. 1995. Structure and function of voltage-gated ion channels. Annu. Rev. Biochem. 64:493–531.
  • Cunningham, K., and G. Fink. 1994. Ca2+ transport in Saccharomyces cer-evisiae. J. Exp. Biol. 196:157–166.
  • Cunningham, K., and G. Fink. 1994. Calcineurin-dependent growth control in Saccharomyces cerevisiae mutants lacking PMC1, a homolog of plasma membrane Ca21 ATPases. J. Cell Biol. 124:351–363.
  • Cunningham, K., and G. Fink. 1996. Calcineurin inhibits VCX1-dependent H+/Ca2+ exchange and induces Ca2+ ATPases in Saccharomyces cerevisiae. Mol. Cell. Biol. 16:2226–2237.
  • Cyert, M. S., and J. Thorner. 1992. Regulatory subunit (CNB1 gene product) of yeast Ca2+/calmodulin-dependent phosphoprotein phosphatases is required for adaptation to pheromone. Mol. Cell. Biol. 12:3460–3469.
  • Davis, T. N. 1995. Calcium in Saccharomyces cerevisiae. Adv. Second Messenger Phosphoprotein Res. 30:339–358.
  • De Waard, M., C. A. Gurnett, and K. P. Campbell. 1996. Structural and functional diversity of voltage-activated calcium channels. Ion Channels 4:41–87.
  • De Waard, M., H. Liu, D. Walker, V. E. S. Scott, C. A. Gurnett, and K. P. Campbell. 1997. Direct binding of G-protein bg complex to voltage-dependent calcium channels. Nature 385:446–450.
  • Dunn, T., K. Gable, and T. Beeler. 1994. Regulation of cellular Ca21 by yeast vacuoles. J. Biol. Chem. 269:7273–7278.
  • Farcasanu, I. C., D. Hirata, E. Tsuchiya, F. Nishiyama, and T. Miyakawa. 1995. Protein phosphatase 2B of Saccharomyces cerevisiae is required for tolerance to manganese, in blocking the entry of ions into the cells. Eur. J. Biochem. 232:712–717.
  • Gaber, R. 1992. Molecular genetics of yeast ion transport. Int. Rev. Cytol. 137A:299–353.
  • Hofmann, F., M. Biel, and V. Flockerzi. 1994. Molecular basis for Ca2+ channel diversity. Annu. Rev. Neurosci. 17:399–418.
  • Iida, H., H. Nakamura, T. Ono, M. S. Okumura, and Y. Anraku. 1994. MID1, a novel Saccharomyces cerevisiae gene encoding a plasma membrane protein, is required for Ca21 influx and mating. Mol. Cell. Biol. 14:8259–8271.
  • Iida, H., Y. Yagawa, and Y. Anraku. 1990. Essential role for induced Ca2+ influx followed by [Ca2+]i rise in maintaining viability of yeast cells late in the mating pheromone response pathway. J. Biol. Chem. 265:13391–13399.
  • Kaiser, C., S. Michaelis, and A. Mitchell. 1994. Methods in yeast genetics. Cold Spring Harbor Laboratory Press, Plainview, N.Y.
  • Kyte, J., and R. F. Doolittle. 1982. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157:105–132.
  • Lapinskas, P. J., S. Lin, and V. C. Culotta. 1996. The role of the Saccharomyces cerevisiae CCC1 gene in the homeostasis of manganese ions. Mol. Microbiol. 21:519–528.
  • Loukin, S., and C. Kung. 1995. Manganese effectively supports yeast cellcycle progression in place of calcium. J. Cell Biol. 131:1025–1037.
  • Mendoza, I., F. Rubio, A. Rodriguez-Navarro, and J. M. Pardo. 1994. The protein phosphatase calcineurin is essential for NaCl tolerance of Saccharomyces cerevisiae. J. Biol. Chem. 269:8792–8796.
  • Moser, M. J., J. R. Geiser, and T. N. Davis. 1996. Ca2+-calmodulin promotes survival of pheromone-induced growth arrest by activation of calcineurin and Ca2+-calmodulin-dependent protein kinase. Mol. Cell. Biol. 16:4824–4831.
  • Nakamura, T., Y. Liu, D. Hirata, H. Namba, S. Harada, T. Hirokawa, and T. Miyakawa. 1993. Protein phosphatase type 2B (calcineurin)-mediated, FK506-sensitive regulation of intracellular ions in yeast is an important determinant for adaptation to high salt stress conditions. EMBO J. 12:4063–4071.
  • Ohya, Y., N. Umemoto, I. Tanida, A. Ohta, H. Iida, and Y. Anraku. 1991. Calcium-sensitive cls mutants of Saccharomyces cerevisiae showing a pet2 phenotype are ascribable to defects of vacuolar membrane H+/ATPase activity. J. Biol. Chem. 266:13791–13977.
  • Paidhungat, M., and S. Garrett. Unpublished data.
  • Rose, M. D., P. Novick, J. H. Thomas, D. Botstein, and G. Fink. 1987. A Saccharomyces cerevisiae genomic plasmid bank based on a centromerecontaining shuttle vector. Gene 60:237–243.
  • Saimi, Y., B. Martinac, R. R. Preston, X. Zhou, S. Sukharev, P. Blount, and C. Kung. 1994. Ion channels of microbes. Soc. Gen. Physiol. Ser. 49:179–185.
  • Sikorski, R. S., and P. Hieter. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27.
  • Snutch, T. P., W. J. Tomlinson, J. P. Leonard, and M. M. Gilbert. 1991. Distinct calcium channels are generated by alternative splicing and are differentially expressed in the mammalian CNS. Neuron 7:45–57.
  • Sprague, G. F., and J. W. Thorner. 1992. Pheromone response and signaltransduction during the mating process of Saccharomyces cerevisiae, p. 657–744. In E. W. Jones, J. R. Pringle, and J. R. Broach (ed.), The molecular and cellular biology of the yeast Saccharomyces. Gene expression. Cold Spring Harbor Laboratory Press, Plainview, N.Y.
  • Striggow, F., and B. E. Ehrlich. 1996. Ligand-gated calcium channels inside and out. Curr. Opin. Cell Biol. 8:490–495.
  • Supek, F., L. Supekova, H. Nelson, and N. Nelson. 1996. A yeast manganese transporter related to the macrophage protein involved in conferring resistance to mycobacteria. Proc. Natl. Acad. Sci. USA 93:5105–5110.
  • Takita, Y., Y. Ohya, and Y. Anraku. 1995. The CLS2 gene encodes a protein with multiple membrane-spanning domains that is important for Ca2+ tolerance in yeast. Mol. Gen. Genet. 246:269–281.
  • Tanabe, T., H. Takeshima, A. Mikami, V. Flockerzi, H. Takahashi, K. Kangawa, M. Kojima, H. Matsuo, T. Hirose, and S. Numa. 1987. Primary structure of the receptor for the calcium channel blockers from skeletal muscle. Nature 328:313–318.
  • Withee, J. L., J. Mulholland, R. Jeng, and M. S. Cyert. 1997. An essential role of the yeast pheromone-induced Ca2+ signal is to activate calcineurin. Mol. Biol. Cell. 8:263–267.
  • Woodcock, D. M., P. J. Crowther, J. Doherty, S. Jefferson, E. DeCruz, M. Noyer-Weidner, S. S. Smith, M. Z. Michael, and M. W. Graham. 1989. Quantitative evaluation of Escherichia coli host strains for tolerance to cytosine methylation in plasmid and phage recombinants. Nucleic Acids Res. 17:3469–3478.
  • Youatt, J. 1993. Calcium and microorganisms. Crit. Rev. Microbiol. 19:83–97.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.