1
Views
100
CrossRef citations to date
0
Altmetric
Research Article

Retinoid-Induced Apoptosis and Sp1 Cleavage Occur Independently of Transcription and Require Caspase Activation

&
Pages 6348-6358 | Received 17 Jun 1997, Accepted 14 Aug 1997, Published online: 29 Mar 2023

REFERENCES

  • Alnemri, E. S., D. J. Livingston, D. W. Nicholson, G. Salvesen, N. A. Thornberry, W. W. Wong, and J. Yuan. 1996. Human ICE-CED-3 protease nomenclature. Cell 87:171.
  • Armstrong, R. C., T. Aja, J. Xiang, S. Gaur, J. F. Krebs, K. Hoang, X. Bai, S. J. Korsmeyer, D. S. Karanewsky, L. C. Fritz, and K. J. Tomaselli. 1996. Fas-induced activation of the cell death-related protease CPP32 is inhibited by Bcl-2 and by ICE family protease inhibitors. J. Biol. Chem. 271:16850–16855.
  • Ausubel, F. M., R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl (ed.). 1995. Current protocols in molecular biology. John Wiley and Sons, Inc., New York, N.Y.
  • Bernard, B. A., J.-M. Bernardon, C. Delescluse, B. Martin, M.-C. Lenoir, J. Maignan, B. Charpentier, W. R. Pilgrim, U. Reichert, and B. Shroot. 1992. Identification of synthetic retinoids with selectivity for human nuclear retinoic acid receptor g. Biochem. Biophys. Res. Commun. 186:977–983.
  • Block, K. L., Y. Shou, and M. Poncz. 1996. An Ets/Sp1 interaction in the 59-flanking region of the megakaryocyte-specific alpha IIb gene appears to stabilize Sp1 binding and is essential for expression of this TATA-less gene. Blood 88:2071–2080.
  • Boldin, M. P., T. M. Goncharov, Y. V. Goltsev, and D. Wallach. 1996. Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1- and TNF receptor-induced cell death. Cell 85:803–815.
  • Boldin, M. P., E. E. Varfolomeev, Z. Pancer, I. L. Mett, J. H. Camonis, and D. Wallach. 1995. A novel protein that interacts with the death domain of Fas/APO-1 contains a sequence motif related to the death domain. J. Biol. Chem. 270:7795–7798.
  • Brancolini, C., M. Benedetti, and C. Schneider. 1995. Microfilament reorganization during apoptosis: the role of Gas2, a possible substrate for ICElike proteases. EMBO J. 14:5179–5190.
  • Bump, N. J., M. Hackett, M. Hugunin, S. Seshagiri, K. Brady, P. Chen, C. Ferenz, S. Franklin, T. Ghayur, P. Li, P. Licari, J. Mankovich, L. Shi, A. H. Greenberg, L. K. Miller, and W. W. Wong. 1995. Inhibition of ICE family proteases by baculovirus anti-apoptotic protein p35. Science 269:1885–1888.
  • Casciola-Rosen, L. A., D. K. Miller, G. J. Anhalt, and A. Rosen. 1994. Specific cleavage of the 70-kDa protein component of the U1 small nuclear ribonucleoprotein is a characteristic biochemical feature of apoptotic cell death. J. Biol. Chem. 269:30757–30760.
  • Chinnaiyan, A. M., K. O’Rourke, M. Tewari, and V. M. Dixit. 1995. FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 81:505–512.
  • Chinnaiyan, A. M., K. O’Rourke, B. R. Lane, and V. M. Dixit. 1997. Interaction of CED-4 with CED-3 and CED-9: a molecular framework for cell death. Science 275:1122–1126.
  • Delia, D., A. Aiello, F. Formelli, E. Fontanella, A. Costa, T. Miyashita, J. C. Reed, and M. A. Pierotti. 1995. Regulation of apoptosis induced by the retinoid N-(4-hydroxyphenyl) retinamide and effect of deregulated bcl-2. Blood 85:359–367.
  • Delia, D., A. Aiello, L. Lombardi, P. G. Pelicci, F. Grignani, F. Grignani, F. Formelli, S. Menard, A. Costa, U. Veronesi, and M. A. Pierotti. 1993. N-(4-Hydroxyphenyl) retinamide induces apoptosis of malignant hemopoietic cell lines including those unresponsive to retinoic acid. Cancer Res. 53:6036–6041.
  • Dignam, J. D., R. M. Lebovitz, and R. G. Roeder. 1983. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 11:1475–1489.
  • Ellis, R. E., J. Yuan, and H. R. Horvitz. 1991. Mechanisms and function of cell death. Annu. Rev. Cell Biol. 7:663–698.
  • Emoto, Y., Y. Manome, G. Meinhardt, H. Kisaki, S. Kharbanda, M. Robertson, T. Ghayur, W. W. Wong, R. Kamen, R. Weichselbaum, and D. Kufe. 1995. Proteolytic activation of protein kinase C d by an ICE-like protease in apoptotic cells. EMBO J. 14:6148–6156.
  • Enari, M., R. V. Talanian, W. W. Wong, and S. Nagata. 1996. Sequential activation of ICE-like and CPP32-like proteases during Fas-mediated apoptosis. Nature 380:723–726.
  • Fanjul, A. N., D. Delia, M. A. Pierotti, D. Rideout, J. Qiu, and M. Pfahl. 1996. 4-Hydroxyphenyl retinamide is a highly selective activator of retinoid receptors. J. Biol. Chem. 271:22441–22446.
  • Faucheu, C., A. Diu, A. W. E. Chan, A. M. Blanchet, C. Miossec, F. Herve, V. Collard-Dutilleul, Y. Gu, R. A. Aldape, J. A. Lippke, C. Rocher, M. S.-S. Su, D. J. Livingston, T. Hercend, and J.-L. Lalanne. 1995. A novel human protease similar to the interleukin-1b-converting enzyme induces apoptosis in transfected cells. EMBO J. 14:1914–1922.
  • Fernandes-Alnemri, T., G. Litwack, and E. S. Alnemri. 1994. CPP32, a novel human apoptotic protein with homology to Caenorhabditis elegans cell death protein Ced-3 and mammalian interleukin-1b-converting enzyme. J. Biol. Chem. 269:30761–30764.
  • Fernandes-Alnemri, T., G. Litwack, and E. S. Alnemri. 1995. Mch2, a new member of the apoptotic Ced-3/Ice cysteine protease gene family. Cancer Res. 55:2737–2742.
  • Gegonne, A., R. Bosselut, R.-A. Bailly, and J. Ghysdael. 1993. Synergistic activation of the HTLV1 LTR Ets-responsive region by transcription factors Ets1 and Sp1. EMBO J. 12:1169–1178.
  • Gu, Y., C. Sarnecki, R. A. Aldape, D. J. Livingston, and M. S. S. Su. 1995. Cleavage of poly(ADP-ribose) polymerase by interleukin-1b-converting enzyme and its homologs TX and Nedd-2. J. Biol. Chem. 270:18715–18718.
  • Henkart, P. A. 1996. ICE family proteases: mediators of all apoptotic cell death? Immunity 4:195–201.
  • Howard, A. D., M. J. Kostura, N. Thornberry, G. J. F. Ding, G. Limjuco, J. Weidner, J. P. Salley, K. A. Hocquist, D. D. Chaplin, R. A. Mumford, J. A. Schmidt, and M. J. Tocci. 1991. IL-1-converting enzyme requires aspartic acid residues for processing of the IL-1b precursor at two distinct sites and does not cleave 31-kDa IL-1a. J. Immunol. 147:2964–2969.
  • Hsu, H., J. Xiong, and D. V. Goeddel. 1995. The TNF receptor 1-associated protein TRADD signals cell death and NF-kB activation. Cell 81:495–504.
  • Itoh, N., S. Yonehara, A. Ishii, M. Yonehara, S. Mizushima, M. Sameshima, A. Hase, Y. Seto, and S. Nagata. 1991. The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell 66:233–243.
  • Janicke, R. U., P. A. Walker, X. Y. Lin, and A. G. Porter. 1996. Specific cleavage of the retinoblastoma protein by an ICE-like protease in apoptosis. EMBO J. 15:6969–6978.
  • Jones, K. A., J. T. Kadonaga, P. A. Luciw, and R. Tjian. 1986. Activation of the AIDS retrovirus promoter by the cellular transcription factor, Sp1. Science 232:755–759.
  • Kadonaga, J. T., K. R. Carner, F. R. Masiarz, and R. Tjian. 1987. Isolation of cDNA encoding transcription factor SP1 and functional analysis of the DNA binding domain. Cell 51:1079–1090.
  • Karlseder, J., H. Rotheneder, and E. Wintersberge. 1996. Interaction of Sp1 with the growth- and cell cycle-regulated transcription factor E2F. Mol. Cell. Biol. 16:1659–1667.
  • Kaufmann, S. H., S. Desnoyers, Y. Ottaviano, N. E. Davidson, and G. G. Poirier. 1993. Specific proteolytic cleavage of poly(ADP-ribose) polymerase: an early marker of chemotherapy-induced apoptosis. Cancer Res. 53:3976–3985.
  • Kostura, M. J., M. J. Tocci, G. Limjuco, J. Chin, P. Cameron, A. G. Hillman, N. A. Chartrain, and J. A. Schmidt. 1989. Identification of a monocyte specific pre-interleukin 1b convertase activity. Proc. Natl. Acad. Sci. USA 86:5227–5231.
  • Kumar, S. 1995. ICE-like proteases in apoptosis. Trends Biochem. Sci. 20:198–202.
  • Kumar, S., M. Kinoshita, M. Noda, N. G. Copeland, and N. A. Jenkins. 1994. Induction of apoptosis by the mouse Nedd2 gene, which encodes a protein similar to the product of the Caenorhabditis elegans cell death gene ced-3 and the mammalian IL-1b-converting enzyme. Genes Dev. 8:1613–1626.
  • Lazebnik, Y. A., S. H. Kaufmann, S. Desnoyers, G. G. Poirier, and W. C. Earnshaw. 1994. Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE. Nature 371:346–347.
  • Lazebnick, Y. A., A. Takahashi, R. D. Moir, R. D. Goldman, G. G. Poirier, S. H. Kaufmann, and W. C. Earnshaw. 1995. Studies of the lamin proteinase reveal multiple parallel biochemical pathways during apoptotic execution. Proc. Natl. Acad. Sci. USA 92:9042–9046.
  • Lin, S. Y., A. R. Black, D. Kostic, S. Pajovic, C. N. Hoover, and J. C. Azizkhan. 1996. Cell cycle-regulated association of E2F1 and Sp1 is related to their functional interaction. Mol. Cell. Biol. 16:1668–1675.
  • Liu, X., H. Zou, C. Slaughter, and X. Wang. 1997. DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell 89:175–184.
  • Lu, X. P., A. Fanjul, N. Picard, M. Pfahl, D. Rungta, K. Nared-Hood, B. Carter, F. J. Piedrafita, S. Tang, E. Fabrizio, and M. Pfahl. 1997. Novel retinoid-related molecules as apoptosis inducers and effective inhibitors of human lung cancer cells in vivo. Nat. Med. 3:686–690.
  • Mangelsdorf, D. J., C. Thummel, M. Beato, P. Herrlich, G. Schutz, K. Umesono, B. Blumberg, P. Kastner, M. Mark, P. Chambon, and R. Evans. 1995. The nuclear receptor superfamily: the second decade. Cell 83:835–839.
  • Martin, S. J., G. P. Amarante-Mendes, L. Shi, T.-H. Chuang, C. A. Casiano, G. A. O’Brien, P. Fitzgerald, E. M. Tan, G. M. Bokoch, A. H. Greenberg, and D. R. Green. 1996. The cytotoxic cell protease granzyme B initiates apoptosis in a cell-free system by proteolytic processing and activation of the ICE/ CED-3 family protease, CPP32, via a novel two-step mechanism. EMBO J. 15:2407–2416.
  • Martin, S. J., and D. R. Green. 1995. Protease activation during apoptosis: death by a thousand cuts? Cell 82:349–352.
  • Martin, S. J., G. A. O’Brien, W. K. Nishioka, A. J. McGahon, A. Mahboubi, T. C. Saido, and D. R. Green. 1995. Proteolysis of fodrin (non-erythroid spectrin) during apoptosis. J. Biol. Chem. 270:6425–6428.
  • Memon, S. A., M. B. Moreno, D. Petrak, and C. M. Zacharchuk. 1995. Bcl-2 blocks glucocorticoidbut not Fasor activation-induced apoptosis in a T cell hybridoma. J. Immunol. 155:4644–4652.
  • Miura, M., H. Zhu, R. Rotello, E. A. Hartwieg, and J. Yuan. 1993. Induction of apoptosis in fibroblasts by IL-1b-converting enzyme, a mammalian homolog of the C. elegans cell death gene ced-3. Cell 75:653–660.
  • Miura, M., R. M. Friedlander, and J. Yuan. 1995. Tumor necrosis factor-induced apoptosis is mediated by a CrmA-sensitive cell death pathway. Proc. Natl. Acad. Sci. USA 92:8318–8322.
  • Morris-Kay, G. 1992. Retinoids in normal development and teratogenesis. Oxford Science Publications, Oxford, United Kingdom.
  • Muzio, M., A. M. Chinnaiyan, F. C. Kischkel, K. O’Rourke, A. Shevchenko, J. Ni, C. Scaffidi, J. D. Bretz, M. Zhang, R. Gentz, M. Mann, P. H. Krammer, M. E. Peter, and V. M. Dixit. 1996. FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) deathinducing signaling complex. Cell 85:817–827.
  • Nicholson, D. W., A. Ali, N. A. Thornberry, J. P. Vaillancourt, C. K. Ding, M. Gallant, Y. Gareau, P. R. Griffin, M. Labelle, Y. A. Lazebnik, N. A. Munday, S. M. Raju, M. E. Smulson, T.-T. Yamin, V. L. Yu, and D. K. Miller. 1995. Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 376:37–43.
  • Noti, J. D., B. C. Reinemann, and M. N. Petrus. 1996. Sp1 binds two sites in the CD11c promoter in vivo specifically in myeloid cells and cooperates with AP1 to activate transcription. Mol. Cell. Biol. 16:2940–2950.
  • Perkins, N. D., N. L. Edwards, C. S. Duckett, A. B. Agranoff, R. Schmid, and G. J. Nabel. 1993. A cooperative interaction between NF-kB and Sp1 is required for HIV-1 enhancer activation. EMBO J. 12:3551–3558.
  • Pfahl, M. 1993. Nuclear receptor/AP-1 interaction. Endocr. Rev. 14:444–450.
  • Pfahl, M. 1996. Retinoids: concepts for separation of desirable and undesirable effects in the treatment or prevention of cancer, p. 127–146. In W. V. Vedeckis (ed.), Hormones and cancer. Birkhauser, Boston, Mass.
  • Pfahl, M., R. Apfel, I. Bendik, A. Fanjul, G. Graupner, M.-O. Lee, N. La-Vista, X.-P. Lu, F. J. Piedrafita, M. A. Ortiz, G. Salbert, and X.-K. Zhang. 1994. Nuclear retinoid receptors and their mechanism of action, p. 327–382. In G. Litwac (ed.), Vitamins and hormones, vol. 49. Academic Press, San Diego, Calif.
  • Piedrafita, F. J., I. Bendik, M. A. Ortiz, and M. Pfahl. 1995. Thyroid hormone receptor homodimers can function as ligand-sensitive repressors. Mol. Endocrinol. 9:563–578.
  • Piedrafita, F. J., R. B. Molander, G. Vansant, E. A. Orlova, M. Pfahl, and W. F. Reynolds. 1996. An Alu element in the myeloperoxidase promoter contains a composite SP1-thyroid hormone-retinoic acid response element. J. Biol. Chem. 271:14412–14420.
  • Rasnick, D. 1985. Synthesis of peptide fluoromethyl ketones and the inhibition of human cathepsin B. Anal. Biochem. 149:461–465.
  • Sarin, A., M.-L. Wu, and P. A. Henkart. 1996. Different ICE-family protease requirements for the apoptotic death of T lymphocytes triggered by diverse stimuli. J. Exp. Med. 184:2445–2450.
  • Shao, Z.-M., M. I. Dawson, X. S. Li, A. K. Rishi, M. S. Sheikh, Q.-X. Han, J. V. Ordonez, B. Shroot, and J. A. Fontana. 1995. p53 independent G0/G1 arrest and apoptosis induced by a novel retinoid in human breast cancer cells. Oncogene 10:493–504.
  • Song, Q., S. P. Lees-Miller, S. Kumar, N. Zhang, D. W. Chan, G. C. M. Smith, S. P. Jackson, E. S. Alnemri, G. Litwack, K. K. Khanna, and M. F. Lavin. 1996. DNA-dependent protein kinase catalytic subunit: a target for an ICE-like protease in apoptosis. EMBO J. 15:3238–3246.
  • Spector, M. S., S. Desnoyers, D. J. Hoeppner, and M. O. Hengartner. 1997. Interaction between the C. elegans cell-death regulators CED-9 and CED-4. Nature 385:653–656.
  • Srinivasula, S. M., M. Ahmad, T. Fernandes-Alnemri, G. Litwack, and E. S. Alnemri. 1996. Molecular ordering of the Fas-apoptotic pathway: the Fas/ APO-1 protease Mch5 is a CrmA-inhibitable protease that activates multiple Ced-3/ICE-like cysteine proteases. Proc. Natl. Acad. Sci. USA 93:14486–14491.
  • Steller, H. 1995. Mechanisms and genes of cellular suicide. Science 267:1445–1449.
  • Tewari, M., L. T. Quan, K. O’Rourke, S. Desnoyers, Z. Zeng, D. R. Beidler, G. G. Poirier, G. S. Salvesen, and V. M. Dixit. 1995. Yama/CPP32b, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase. Cell 81:801–809.
  • Tewari, M., and V. M. Dixit. 1995. Fas- and tumor necrosis factor-induced apoptosis is inhibited by the poxvirus crmA gene product. J. Biol. Chem. 270:3255–3260.
  • Thome, M., P. Schneider, K. Hofmann, H. Fickenscher, E. Meinl, F. Neipel, C. Mattmann, K. Burns, J.-L. Bodmer, M. Schroter, C. Scaffidi, P. H. Krammer, M. E. Peter, and J. Tschopp. 1997. Viral FLICE-inhibitory proteins (FLIPs) prevent apoptosis induced by death receptors. Nature 386:517–521.
  • Thornberry, N. A., H. G. Bull, J. R. Calaycay, K. T. Chapman, A. D. Howard, M. J. Kostura, D. K. Miller, S. M. Molineaux, J. R. Weidner, J. Aunins, K. O. Elliston, J. M. Ayala, F. J. Casano, J. Chin, G. J.-F. Ding, L. A. Egger, E. P. Gaffney, G. Limjuco, O. C. Palyha, S. M. Raju, A. M. Rolando, J. P. Salley, T.-T. Yamin, T. D. Lee, J. E. Shively, M. MacCross, R. A. Mumford, J. A. Schmidt, and M. J. Tocci. 1992. A novel heterodimeric cysteine protease is required for interleukin-1b processing in monocytes. Nature 356:768–774.
  • Voelkel-Johnson, C., A. J. Entingh, W. S. M. Wold, L.-R. Golding, and S. M. Laster. 1995. Activation of intracellular protease is an early event in TNF-induced apoptosis. J. Immunol. 154:1707–1716.
  • Wang, L., M. Miura, L. Bergeron, H. Zhu, and J. Yuan. 1994. Ich-1, an Ice/ced-3-related gene, encodes both positive and negative regulators of programmed cell death. Cell 78:739–750.
  • Wang, X., N. G. Zelenski, J. Yang, J. Sakai, M. S. Brown, and J. L. Goldstein. 1996. Cleavage of sterol regulatory element binding proteins (SREBPs) by CPP32 during apoptosis. EMBO J. 15:1012–1020.
  • White, E. 1996. Life, death, and the pursuit of apoptosis. Genes Dev. 10:1–15.
  • Xue, D., and H. R. Horvitz. 1995. Inhibition of the Caenorhabditis elegans cell-death protease CED-3 by a CED-3 cleavage site in baculovirus p35 protein. Nature 377:248–251.
  • Xue, D., S. Shaham, and H. R. Horvitz. 1996. The Caenorhabditis elegans cell-death protein CED-3 is a cysteine protease with substrate specificities similar to those of the human CPP32 protease. Genes Dev. 10:1073–1083.
  • Yonehara, S., A. Ishii, and M. Yonehara. 1989. A cell-killing monoclonal antibody (anti-Fas) to a cell surface antigen co-downregulated with the receptor of tumor necrosis factor. J. Exp. Med. 169:1747–1756.
  • Yuan, J., and H. R. Horvitz. 1990. Genetic mosaic analysis of ced-3 and ced-4, two genes that control programmed cell death in the nematode C. elegans. Dev. Biol. 138:33–41.
  • Yuan, J., S. Shaham, S. Ledoux, H. M. Ellis, and H. R. Horvitz. 1993. The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1b-converting enzyme. Cell 75:641–652.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.