9
Views
140
CrossRef citations to date
0
Altmetric
Research Article

Synergistic Activation of NF-κB by Tumor Necrosis Factor Alpha and Gamma Interferon via Enhanced IκBα Degradation and De Novo IκBβ Degradation

&
Pages 6746-6754 | Received 12 Jun 1997, Accepted 15 Aug 1997, Published online: 29 Mar 2023

REFERENCES

  • Aggarwal, B. B., T. E. Eessalu, and P. E. Hass. 1985. Characterization of receptors for human tumor necrosis factor and their regulation by g-inter-feron. Nature 318:665–667.
  • Akiyama, T., J. Ishida, S. Nakagawa, H. Ogawara, S. Watanabe, N. Itoh, M. Shibuya, and Y. Fukami. 1987. Genistein, a specific inhibitor of tyrosine-specific protein kinases. J. Biol. Chem. 262:5592–5595.
  • Baeuerle, P. A., and T. Henkel. 1994. Function and activation of NF-kB in the immune system. Annu. Rev. Immunol. 12:141–179.
  • Baldwin, A. S., Jr., and P. A. Sharp. 1988. Two transcription factors, NF-kB and H2TF1, interact with a single regulatory sequence in the class I major histocompatibility complex promoter. Proc. Natl. Acad. Sci. USA 85:723–727.
  • Baldwin, A. S., Jr., J. C. Azizkhan, D. E. Jensen, A. A. Beg, and L. R. Coodly. 1991. Induction of NF-kB DNA-binding activity during the G0-to-G1 transition in mouse fibroblasts. Mol. Cell. Biol. 11:4943–4951.
  • Baldwin, A. S., Jr. 1996. The NF-kB and IkB proteins: new discoveries and insights. Annu. Rev. Immunol. 14:649–681.
  • Bancroft, G. J., K. C. F. Sheehan, R. D. Schreiber, and E. R. Unanue. 1989. Tumor necrosis factor is involved in the T cell-independent pathway of macrophage activation in SCID mice. J. Immunol. 143:127–130.
  • Bazzoni, F., and B. Beutler. 1996. The tumor necrosis factor ligand and families. N. Engl. J. Med. 334:1717–1725.
  • Beg, A., W. Sha, R. Bronson, and D. Baltimore. 1995. Constitutive NF-kB activation, enhanced granulopoiesis and neonatal lethality in IkBa deficient mice. Genes Dev. 9:2736–2746.
  • Beg, A., W. Sha, R. Bronson, S. Ghosh, and D. Baltimore. 1995. Embryonic lethality and liver degeneration in mice lacking the RelA component of NF-kB. Nature 376:167–170.
  • Beg, A. A., S. M. Rubin, R. I. Scheinman, S. Haskill, C. A. Rosen, and A. S. Baldwin, Jr. 1992. IkB interacts with the nuclear localization sequences of the subunits of NF-kB: a mechanism for cytoplasmic retention. Genes Dev. 6:1899–1913.
  • Beg, A. A., T. S. Finco, P. V. Nantermet, and A. S. Baldwin, Jr. 1993. Tumor necrosis factor and interleukin-1 lead to phosphorylation and loss of IkBa: a mechanism for NF-kB activation. Mol. Cell. Biol. 13:3301–3310.
  • Beutler, B. 1995. TNF, immunity and inflammatory disease: lessons of the past decade. J. Invest. Med. 43:227–235.
  • Blanchet, O., J. F. Bourge, H. Zinszner, Z. Tatari, L. Degos, and P. Paul. 1991. DNA binding of regulatory factors interacting with MHC-class-I gene enhancer correlates with MHC-class-I transcriptional level in class-I-defective cell lines. Int. J. Cancer 6(Suppl.):138–145.
  • Brockman, J. A., D. C. Scherer, T. A. McKinsey, S. M. Hall, X. Qi, W. Y. Lee, and D. W. Ballard. 1995. Coupling of a signal response domain in IkBa to multiple pathways for NF-kB activation. Mol. Cell. Biol. 15:2809–2818.
  • Brown, K., S. Gerstberger, L. Carlson, G. Franzoso, and U. Siebenlist. 1995. Control of IkBa proteolysis by site-specific, signal-induced phosphorylation. Science 267:1485–1488.
  • Buchmeier, N. A., and R. D. Schreiber. 1985. Requirement of endogenous interferon-γ production for resolution of Listeria monocytogenes infection. Proc. Natl. Acad. Sci. USA 87:7404–7408.
  • Burkly, L., C. Hession, L. Ogata, C. Reilly, L. Marconi, D. Olsen, R. Tizard, R. Cate, and D. Lo. 1995. Expression of RelB is required for the development of thymic medulla and dendritic cells. Nature 373:531–536.
  • Chen, Z., J. Hagler, V. Palombella, F. Melandri, D. Scherer, D. Ballard, and T. Maniatis. 1995. Signal-induced site-specific phosphorylation targets IkBa to the ubiquitin-proteasome pathway. Genes Dev. 9:1586–1597.
  • Chen, Z. J., L. Parent, and T. Maniatis. 1996. Site-specific phosphorylation of IkappaBalpha by a novel ubiquitination-dependent protein kinase activity. Cell 84:853–862.
  • Cheshire, J. L., and A. S. Baldwin, Jr. Unpublished data.
  • Cogswell, P. C., M. W. Mayo, and A. S. Baldwin, Jr. 1997. Involvement of Egr-1/RelA synergy in distinguishing T cell activation from tumor necrosis factor-a-induced NF-kB1 transcription. J. Exp. Med. 185:491–497.
  • Collins, T., H. J. Palmer, M. Z. Whitley, A. S. Neish, and A. J. Williams. 1993. A common theme in endothelial activation. Insights from the structural analysis of the genes for E-selectin and VCAM-1. Trends Cardiovasc. Med. 3:92–97.
  • Collins, T., M. A. Read, A. S. Neish, M. Z. Whitley, D. Thanos, and T. Maniatis. 1995. Transcriptional regulation of endothelial cell adhesion molecules: NF-kappa B and cytokine-inducible enhancers. FASEB J. 9:899–909.
  • Cooper, A. M., D. K. Dalton, T. A. Stewart, J. P. Griffen, D. G. Russell, and I. M. Orme. 1993. Disseminated tuberculosis in IFNg gene-disrupted mice. J. Exp. Med. 178:2243–2248.
  • Darnell, J. E., Jr., I. M. Kerr, and G. R. Stark. 1994. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264:1415–1421.
  • Doukas, J., and J. S. Pober. 1990. IFN-γ enhances endothelial activation induced by tumor necrosis factor but not IL-1. J. Immunol. 145:1727–1733.
  • Drew, P. D., G. Franzoso, K. G. Becker, V. Bours, L. M. Carlson, U. Siebenlist, and K. Ozato. 1995. NF kappa B and interferon regulatory factor 1 physically interact and synergistically induce major histocompatibility class I gene expression. J. Interferon Cytokine Res. 15:1037–1045.
  • Edgell, C.-J. S., C. C. McDonald, and J. B. Graham. 1983. Permanent cell line expressing factor VIII related antigen established by hybridization. Proc. Natl. Acad. Sci. USA 80:3734–3737.
  • Farrar, M. A., and R. D. Schreiber. 1993. The molecular cell biology of interferon-γ and its receptor. Annu. Rev. Immunol. 11:571–611.
  • Finco, T. S., and A. S. Baldwin, Jr. 1995. Mechanistic aspects of NF-kB regulation: the emerging role of phosphorylation and proteolysis. Immunity 3:263–272.
  • Flynn, J. L., J. Chan, K. J. Triebold, D. K. Dalton, T. K. Stewart, and B. R. Bloom. 1993. An essential role for interferon-γ in resistance to Mycobacterium tuberculosis infection. J. Exp. Med. 178:2249–2254.
  • Flynn, J. L., M. M. Goldstein, J. Chan, K. J. Triebold, K. Pfeffer, C. J. Lowenstein, R. Schreiber, T. W. Mak, and B. R. Bloom. 1995. Tumor necrosis factor-α is required in the protective immune response against Mycobacterium tuberculosis in mice. Immunity 2:561–572.
  • Gashler, A., and V. P. Sukhatme. 1995. Early growth response protein 1 (EGR-1): prototype of a zinc-finger family of transcription factors. Prog. Nucleic Acid Res. Mol. Biol. 50:191–224.
  • Greene, L. A., and A. S. Tischler. 1976. Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc. Natl. Acad. Sci. USA 73:2424–2428.
  • Greene, L. A., and A. S. Tischler. 1982. PC12 pheochromocytoma cultures in neurobiological research. Adv. Cell. Neurobiol. 3:373–414.
  • Harhaj, E. W., S. B. Maggirwar, L. Good, and S.-C. Sun. 1996. CD28 mediates a potent costimulatory signal for rapid degradation of IkBb which is associated with accelerated activation of various NF-kB/Rel heterodimers. Mol. Cell. Biol. 16:6736–6743.
  • Haskill, S., A. A. Beg, S. M. Tompkins, J. S. Morris, A. D. Yurochko, A. Sampson-Johannes, K. Mondal, P. Ralph, and A. S. Baldwin, Jr. 1991. Characterization of an immediate-early gene induced in adherent monocytes that encodes IkB-like activity. Cell 65:1281–1289.
  • Havell, E. A. 1989. Evidence that tumor necrosis factor has an important role in antibacterial resistance. J. Immunol. 143:2894–2899.
  • Huang, S., W. Hendriks, A. Althage, S. Hemmi, H. Bluethmann, R. Kamijo, J. Vilcek, R. M. Zinkernagel, and M. Aguet. 1993. Immune response in mice that lack the interferon-γ receptor. Science 259:1742–1745.
  • Ihle, J. N. 1996. STATs: signal transducers and activators of transcription. Cell 84:331–334.
  • Jahnke, A., and J. P. Johnson. 1994. Synergistic activation of intercellular adhesion molecule 1 (ICAM-1) by TNF-α and IFN-γ is mediated by p65/p50 and p65/c-Rel and interferon-responsive factor Stat1a (p91) that can be activated by both IFN-γ and IFN-α. FEBS Lett. 354:220–226.
  • Johnson, D. R., and J. S. Pober. 1994. HLA class I heavy-chain gene promoter elements mediating synergy between tumor necrosis factor and interferons. Mol. Cell. Biol. 14:1322–1332.
  • Johnson, D. R., I. Douglas, A. Jahnke, S. Ghosh, and J. S. Pober. 1996. A sustained reduction in IkB-b may contribute to persistent NF-kB activation in human endothelial cells. J. Biol. Chem. 271:16317–16322.
  • Kaltschmidt, B., P. A. Baeuerle, and C. Kaltschmidt. 1993. Potential involvement of the transcription factor NF-kB in neurological disorders. Mol. Aspects Med. 14:171–190.
  • Kontgen, F., R. Grumont, A. Strasser, D. Metcalf, R. Li, D. Tarlinton, and S. Gerondakis. 1995. Mice lacking the c-Rel proto-oncogene exhibit defects in lymphocyte proliferation, humoral immunity, and IL-2 expression. Genes Dev. 9:1965–1977.
  • Krakauer, T., and J. J. Oppenheim. 1993. IL-1 and tumor necrosis factoralpha each up-regulate both the expression of IFN-gamma receptors and enhance IFN-gamma-induced HLA-DR expression on human monocytes and a human monocytic cell line (THP-1). J. Immunol. 150:1205–1211.
  • Leenen, P. J. M., B. P. Canono, D. A. Drevets, J. S. A. Voerman, and P. A. Campbell. 1994. TNF-α and IFN-γ stimulate a macrophage precursor cell line to kill Listeria monocytogenes in a nitric oxide-independent manner. J. Immunol. 153:5141–5147.
  • Liou, H. C., and D. Baltimore. 1993. Regulation of the NF-kB/Rel transcription factor and IkB inhibitor system. Curr. Opin. Cell Biol. 5:477–487.
  • Marfaing-Koka, A., O. Devergne, G. Gorgone, A. Portier, T. J. Schall, P. Galanaud, and D. Emilie. 1995. Regulation of the production of the RANTES chemokine by endothelial cells: synergistic induction by IFN-γ plus TNF-α and inhibition by IL-4 and IL-13. J. Immunol. 154:1870–1878.
  • Martin, E., C. Nathan, and Q.-W. Xie. 1994. Role of interferon regulatory factor 1 in induction of nitric oxide synthase. J. Exp. Med. 180:977–984.
  • McKinsey, T. A., J. A. Brockman, D. C. Scherer, S. W. Al-Murrani, P. L. Green, and D. W. Ballard. 1996. Inactivation of IkBb by the Tax protein of human T-cell leukemia virus type 1: a potential mechanism for constitutive induction of NF-kB. Mol. Cell. Biol. 16:2083–2090.
  • Miyamoto, S., and I. Verma. 1995. Rel/NF-kB/IkB story. Adv. Cancer Res. 66:255–292.
  • Murphy, T. L., M. G. Cleveland, P. Kulesza, J. Magram, and K. M. Murphy. 1995. Regulation of interleukin 12 p40 expression through an NF-kB halfsite. Mol. Cell. Biol. 15:5258–5267.
  • Nakane, A., T. Minagawa, and K. Kato. 1988. Endogenous tumor necrosis factor (cachectin) is essential to host resistance against Listeria monocytogenes infection. Infect. Immun. 56:2563–2569.
  • Nakane, A., T. Minagawa, M. Kohanawa, Y. Chen, H. Sato, M. Moriyama, and N. Tsuruoka. 1989. Interactions between endogenous gamma interferon and tumor necrosis factor in host resistance against primary and secondary Listeria monocytogenes infections. Infect. Immun. 57:3331–3337.
  • Narumi, S., J. M. Tebo, J. H. Finke, and T. A. Hamilton. 1992. IFN-γ and IL-2 cooperatively activate NF-kB in murine peritoneal macrophages. J. Immunol. 149:529–534.
  • Neish, A. S., M. A. Read, D. Thanos, R. Pine, T. Maniatis, and T. Collins. 1995. Endothelial interferon regulatory factor 1 cooperates with NF-kB as a transcriptional activator of vascular cell adhesion molecule 1. Mol. Cell Biol. 15:2558–2569.
  • Ohmori, Y., and T. A. Hamilton. 1995. The interferon-stimulated response element and a kB site mediate synergistic induction of murine IP-10 gene transcription by IFN-γ and TNF-a. J. Immunol. 154:5235–5244.
  • Pellegrini, S., and C. Schindler. 1993. Early events in signalling by interferons. Trends Biochem. Sci. 18:338–342.
  • Pestka, S., J. A. Langer, K. C. Zoon, and C. E. Samuel. 1987. Interferons and their actions. Annu. Rev. Biochem. 56:727–777.
  • Pfeffer, K., T. Matsuyama, T. M. Kündig, A. Wakeham, K. Kishihara, A. Shahinian, K. Wiegman, P. S. Ohashi, M. Krönke, and T. W. Mak. 1993. Mice deficient for the 55 kD tumor necrosis factor receptor are resistant to endotoxic shock, yet succumb to L. monocytogenes infection. Cell 73:457–467.
  • Pober, J. S., and R. S. Cotran. 1990. Cytokines and endothelial cell biology. Physiol. Rev. 70:427–451.
  • Rothe, J., W. Lesslauer, H. Lötscher, Y. Lang, P. Koebel, F. Köntgen, A. Althage, R. Zinkernagel, M. Steinmetz, and H. Bluethmann. 1993. Mice lacking the tumour necrosis factor receptor 1 are resistant to TNF-mediated toxicity but highly susceptible to infection by Listeria monocytogenes. Nature 364:798–802.
  • Ruggiero, V., J. Tavernier, W. Fiers, and C. Baglioni. 1986. Induction of the synthesis of tumor necrosis factor receptors by interferon-g. J. Immunol. 136:2445–2450.
  • Sancéau, J., G. Merlin, and J. Wietzerbin. 1992. Tumor necrosis factor-α and IL-6 up-regulate IFN-γ receptor gene expression in human monocytic THP-1 cells by transcriptional and post-transcriptional mechanisms. J. Immunol. 149:1671–1677.
  • Sancéau, J., T. Kaisho, T. Hirano, and J. Wietzerbin. 1995. Triggering of the human interleukin-6 gene by interferon-γ and tumor necrosis factor-α in monocytic cells involves cooperation between interferon regulatory factor-1, NFkB, and Sp1 transcription factors. J. Biol. Chem. 270:27920–27931.
  • Scheinman, R. I., A. A. Beg, and A. S. Baldwin, Jr. 1993. NF-kB p100 (Lyt-10) is a component of H2TF1 and can function as an IkB-like molecule. Mol. Cell. Biol. 13:6089–6101.
  • Scherer, D. C., J. A. Brockman, Z. Chen, T. Maniatis, and D. Ballard. 1995. Signal-induced degradation of IkBa requires site-specific ubiquitination. Proc. Natl. Acad. Sci. USA 92:11259–11263.
  • Schindler, C., and J. E. Darnell, Jr. 1995. Transcriptional responses to polypeptide ligands: the JAK-STAT pathway. Annu. Rev. Biochem. 64:621–651.
  • Sha, W., H. C. Liou, E. Tuomanen, and D. Baltimore. 1995. Targeted disruption of the p50 subunit of NF-kB leads to multifocal defects in immune responses. Cell 80:321–330.
  • Sidhu, R. S., and A. P. Bollon. 1993. Tumor necrosis factor activities and cancer therapy—a perspective. Pharmacol. Ther. 57:79–128.
  • Siebenlist, U., G. Franzoso, and K. Brown. 1994. Structure, regulation and function of NF-kB. Annu. Rev. Cell Biol. 10:405–455.
  • Singh, S., B. G. Darnay, and B. B. Aggarwal. 1996. Site-specific tyrosine phosphorylation of IkBa negatively regulates its inducible phosphorylation and degradation. J. Biol. Chem. 271:31049–31054.
  • Spink, J., J. Cohen, and T. J. Evans. 1995. The cytokine responsive vascular smooth muscle cell enhancer of inducible nitric oxide synthase. J. Biol. Chem. 270:29541–29547.
  • Suyang, H., R. Phillips, I. Douglas, and S. Ghosh. 1996. Role of unphosphorylated, newly synthesized IkBb in persistent activation of NF-kB. Mol. Cell. Biol. 16:5444–5449.
  • Thompson, J. E., R. J. Phillips, H. Erdjument-Bromage, P. Tempst, and S. Ghosh. 1995. IkB-b regulates the persistent response in a biphasic activation of NF-kB. Cell 80:573–582.
  • Tiisala, S., M.-L. Majuri, O. Carpén, and R. Renkonen. 1994. Genistein enhances the ICAM-mediated adhesion by inducing the expression of ICAM-1 and its counter-receptors. Biochem. Biophys. Res. Commun. 203:443–449.
  • Tsujimoto, M., Y. K. Yip, and J. Vilcek. 1986. Interferon-γ enhances expression of cellular receptors for tumor necrosis factor. J. Immunol. 136:2441–2444.
  • Weih, F., D. Carrasco, S. Durham, D. Barton, C. Rizzo, R. P. Ryseck, S. Lira, and R. Bravo. 1995. Multiorgan inflammation and hematopoietic abnormalities in mice with a targeted disruption of RelB, a member of the NF-kB/Rel family. Cell 80:331–340.
  • Weil, R., C. Laurent-Winter, and A. Israël. 1997. Regulation of IkBb degradation. J. Biol. Chem. 272:9942–9949.
  • Xie, Q.-W., Y. Kashiwabara, and C. Nathan. 1994. Role of transcription factor NF-kB/Rel in induction of nitric oxide synthase. J. Biol. Chem. 269:4705–4708.
  • Yasumoto, K., S.-I. Okamoto, N. Mukaida, S. Murakami, M. Mai, and K. Matsushima. 1992. Tumor necrosis factor a and interferon γ synergistically induce interleukin 8 production in a human gastric cancer cell line through acting concurrently on AP-1 and NF-kB-like binding sites of the interleukin 8 gene. J. Biol. Chem. 267:22506–22511.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.