0
Views
19
CrossRef citations to date
0
Altmetric
Research Article

Transcriptional Activation by TFIIB Mutants That Are Severely Impaired in Interaction with Promoter DNA and Acidic Activation Domains

&
Pages 6794-6802 | Received 03 Jul 1997, Accepted 04 Sep 1997, Published online: 29 Mar 2023

References

  • Apone, L. M., C. A. Virbasius, J. C. Reese, and M. R. Green. 1996. Yeast TAFII90 is required for cell-cycle progression through G2/M but not for general transcription activation. Genes Dev. 10:2368–2380.
  • Arndt, K. M., S. Ricupero-Hovasse, and F. Winston. 1995. TBP mutants defective in activated transcription in vivo. EMBO J. 14:1490–1497.
  • Bangur, C. S., T. S. Pardee, and A. S. Ponticelli. 1997. Mutational analysis of the D1/E1 core helices and the conserved N-terminal region of yeast transcriptional factor IIB (TFIIB): identification of an N-terminal mutant that stablizes TATA-binding protein-TFIIB-DNA complexes. Mol. Cell. Biol. 17:6784–6793.
  • Barberis, A., J. Pearlberg, N. Simkovich, S. Farrell, P. Reinagel, C. Bamdad, G. Sigal, and M. Ptashne. 1995. Contact with a component of the polymerase II holoenzyme suffices for gene activation. Cell 81:359–368.
  • Berger, S. L., B. Pina, N. Silverman, G. A. Marcus, J. Agapite, J. L. Regier, S. J. Triezenberg, and L. Guarente. 1992. Genetic isolation of ADA2: a potential transcriptional adaptor required for function of certain acidic activation domains. Cell 70:251–265.
  • Boeke, J. D., J. Trueheart, G. Natsoulis, and G. R. Fink. 1987. 5-Fluoroorotic acid as a selective agent in yeast molecular genetics. Methods Enzymol. 154:164–175.
  • Bryant, G. O., L. S. Martel, S. K. Burley, and A. J. Berk. 1996. Radical mutations reveal TATA-box binding protein surfaces required for activated transcription in vivo. Genes Dev. 10:2491–2504.
  • Chatterjee, S., and K. Struhl. 1995. Connecting a promoter-bound protein to the TATA-binding protein overrides the need for a transcriptional activation region. Nature 374:820–822.
  • Chen, W., and K. Struhl. 1988. Saturation mutagenesis of a yeast his3 TATA element: genetic evidence for a specific TATA-binding protein. Proc. Natl. Acad. Sci. USA 85:2691–2695.
  • Colgan, J., H. Ashali, and J. L. Manley. 1995. A direct interaction between a glutamine-rich activator and the N terminus of TFIIB can mediate transcriptional activation in vivo. Mol. Cell. Biol. 15:2311–2320.
  • Colgan, J., S. Wampler, and J. L. Manley. 1993. Interaction between a transcriptional activator and transcription factor IIB in vivo. Nature 362:549–553.
  • Cormack, B. P., M. Strubin, A. S. Ponticelli, and K. Struhl. 1991. Functional differences between yeast and human TFIID are localized to the highly conserved region. Cell 65:341–348.
  • Couto, G., N. Klages, and M. Strubin. 1997. Synergistic and promoter-selective activation of transcription by recruitment of TFIID and TFIIB. Proc. Natl. Acad. Sci. USA 94:8036–8041.
  • Dubrovskaya, V., A.-C. Lavigne, I. Davidson, J. Acker, A. Staub, and L. Tora. 1996. Distinct domains of hTAFII100 are required for functional interaction with transcription factor TFIIFβ (RAP30) and incorporation into the TFIID complex. EMBO J. 15:3702–3712.
  • Fang, S. M., and Z. F. Burton. 1996. RNA polymerase II-associated protein (RAP) 74 binds transcription factor (TF) IIB and blocks TFIIB-RAP30 binding. J. Biol. Chem. 271:11703–11709.
  • Goodrich, J. A., T. Hoey, C. J. Thut, A. Admon, and R. Tjian. 1993. Drosophila TAFII40 interacts with both a VP16 activation domain and the basal transcription factor TFIIB. Cell 75:519–530.
  • Griggs, D. W., and M. Johnston. 1991. Regulated expression of the GAL4 activator gene in yeast provides a sensitive switch for glucose repression. Proc. Natl. Acad. Sci. USA 88:8597–8601.
  • Griggs, D. W., and M. Johnston. 1993. Promoter elements determining weak expression of the GAL4 regulatory gene of Saccharomyces cerevisiae. Mol. Cell. Biol. 13:4999–5009.
  • Gupta, R., A. Emili, G. Pan, H. Xiao, M. Shales, J. Greenblatt, and C. J. Ingles. 1996. Characterization of the interaction between the acidic activation domain of VP16 and the RNA polymerase II initiation factor TFIIB. Nucleic Acids Res. 24:2324–2330.
  • Ha, I., W. S. Lane, and D. Reinberg. 1991. Cloning of a human gene encoding the general transcription initiation factor IIB. Nature 352:689–695.
  • Hisatake, K., T. Ohta, R. Takada, M. Guermah, M. Horikoshi, Y. Nakatani, and R. G. Roeder. 1995. Evolutionary conservation of human TATA-binding-polypeptide-associated factors TAFII31 and TAFII80 and interactions of TAFII80 with other TAFs and with general transcription factors. Proc. Natl. Acad. Sci. USA 92:8195–8199.
  • Hori, R., S. Pyo, and M. Carey. 1995. Protease footprinting reveals a surface on transcription factor TFIIB that serves as an interface for activators and coactivators. Proc. Natl. Acad. Sci. USA 92:6047–6051.
  • Ingles, C. J., M. Shales, W. D. Cress, S. J. Triezenberg, and J. Greenblatt. 1991. Reduced binding of TFIID to transcriptionally compromised mutants of VP16. Nature 351:588–590.
  • Iyer, V., and K. Struhl. 1995. Mechanism of differential utilization of the his3 TR and TC TATA elements. Mol. Cell. Biol. 15:7059–7066.
  • Iyer, V., and K. Struhl. 1995. Poly(dA:dT), a ubiquitous promoter element that stimulates transcription via its intrinsic structure. EMBO J. 14:2570–2579.
  • Iyer, V., and K. Struhl. 1996. Absolute mRNA levels and transcriptional initiation rates in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 93:5208–5212.
  • Jiang, Y. W., and D. J. Stillman. 1992. Involvement of the SIN4 global transcriptional regulator in the chromatin structure of Saccharomyces cerevisiae. Mol. Cell. Biol. 12:4503–4514.
  • Keaveney, M., and K. Struhl. Unpublished results.
  • Kim, T. K., and R. G. Roeder. 1994. Proline-rich activator CTF1 targets the TFIIB assembly step during transcriptional activation. Proc. Natl. Acad. Sci. USA 91:4170–4174.
  • Kim, Y.-J., S. Bjorklund, Y. Li, M. H. Sayre, and R. D. Kornberg. 1994. A multiprotein mediator of transcriptional activation and its interaction with the C-terminal repeat domain of RNA polymerase II. Cell 77:599–608.
  • Klages, N., and M. Strubin. 1995. Stimulation of RNA polymerase II transcription initiation by recruitment of TBP in vivo. Nature 374:822–823.
  • Koleske, A. J., and R. A. Young. 1994. An RNA polymerase II holoenzyme responsive to activators. Nature 368:466–469.
  • Lee, M., and K. Struhl. 1995. Mutations on the DNA-binding surface of TBP can specifically impair the response to acidic activators in vivo. Mol. Cell. Biol. 15:5461–5469.
  • Lee, M., and K. Struhl. 1997. A severely defective TATA-binding protein- TFIIB interaction does not preclude transcriptional activation in vivo. Mol. Cell. Biol. 17:1336–1345.
  • Lee, S., and S. Hahn. 1995. Model for binding of transcription factor TFIIB to the TBP-DNA complex. Nature 376:609–612.
  • Li, Y., P. M. Flanagan, H. Tschochner, and R. D. Kornberg. 1994. RNA polymerase II initiation factor interactions and transcription start site selection. Science 263:805–807.
  • Lin, Y.-S., and M. R. Green. 1991. Mechanism of action of an acidic transcriptional activator in vitro. Cell 64:971–981.
  • Lin, Y.-S., I. Ha, E. Maldonado, D. Reinberg, and M. R. Green. 1991. Binding of general transcription factor TFIIB to an acidic activating region. Nature 353:569–571.
  • Moqtaderi, Z., Y. Bai, D. Poon, P. A. Weil, and K. Struhl. 1996. TBP- associated factors are not generally required for transcriptional activation in yeast. Nature 382:188–191.
  • Nerlov, C., and E. B. Ziff. 1995. CCAAT/enhancer binding protein-α amino acid motifs with dual TBP and TFIIB binding ability co-operate to activate transcription in both yeast and mammalian cells. EMBO J. 14:4318–4328.
  • Nikolov, D. B., H. Chen, E. D. Halay, A. A. Usheva, K. Hisatake, D. K. Lee, R. G. Roeder, and S. K. Burley. 1995. Crystal structure of a TFIIB-TBP- TATA-element ternary complex. Nature 377:119–128.
  • Orphanides, G., T. Lagrange, and D. Reinberg. 1996. The general initiation factors of RNA polymerase II. Genes Dev. 10:2657–2683.
  • Ozer, J., P. A. Moore, A. H. Bolden, A. Lee, C. A. Rosen, and P. M. Lieberman. 1994. Molecular cloning of the small (γ) subunit of human TFIIA reveals functions critical for activated transcription. Genes Dev. 8:2324–2335.
  • Pinto, I., D. E. Ware, and M. Hampsey. 1992. The yeast SUA7 gene encodes a homolog of human transcription factor TFIIB and is required for normal start site selection in vivo. Cell 68:977–988.
  • Ptashne, M., and A. Gann. 1997. Transcriptional activation by recruitment. Nature 386:569–577.
  • Roberts, S. G., B. Choy, S. S. Walker, Y. S. Lin, and M. R. Green. 1995. A role for activator-mediated TFIIB recruitment in diverse aspects of transcriptional regulation. Curr. Biol. 5:508–516.
  • Roberts, S. G., and M. R. Green. 1994. Activator-induced conformational change in general transcription factor TFIIB. Nature 371:717–720.
  • Roberts, S. G., I. Ha, E. Maldonado, D. Reinberg, and M. R. Green. 1993. Interaction between an acidic activator and transcription factor TFIIB is required for transcriptional activation. Nature 363:741–744.
  • Roeder, R. G. 1996. The role of general initiation factors in transcription by RNA polymerase II. Trends Biochem. Sci. 21:327–335.
  • Ruppert, S., and R. Tjian. 1995. TAFII250 interacts with RAP74: implications for RNA polymerase II initiation. Genes Dev. 9:2747–2755.
  • Shaw, S. P., J. Wingfield, M. J. Dorsey, and J. Ma. 1996. Identifying a species-specific region of yeast TFIIB in vivo. Mol. Cell. Biol. 16:3651–3657.
  • Stargell, L. A., and K. Struhl. 1995. The TBP-TFIIA interaction in the response to acidic activators in vivo. Science 269:75–78.
  • Stargell, L. A., and K. Struhl. 1996. A new class of activation-defective TATA-binding protein mutants: evidence for two steps of transcriptional activation in vivo. Mol. Cell. Biol. 16:4456–4464.
  • Stringer, K. F., C. J. Ingles, and J. Greenblatt. 1990. Direct and selective binding of an acidic transcriptional activation domain to the TATA-box factor TFIID. Nature 345:783–786.
  • Struhl, K. 1996. Chromatin structure and RNA polymerase II connection: implications for transcription. Cell 84:179–182.
  • Tang, H., X. Sun, D. Reinberg, and R. Ebright. 1996. Protein-protein interactions in eukaryotic transcription initiation: structure of the preinitiation complex. Proc. Natl. Acad. Sci. USA 93:1119–1124.
  • Tansey, W. P., and W. Herr. 1995. The ability to associate with activation domains in vitro is not required for the TATA box-binding protein to support activated transcription in vivo. Proc. Natl. Acad. Sci. USA 92:10550–10554.
  • Tansey, W. P., and W. Herr. 1997. Selective use of TBP and TFIIB revealed by a TATA-TBP-TFIIB array with altered specificity. Science 275:829–831.
  • Walker, S. S., J. C. Reese, L. M. Apone, and M. R. Green. 1996. Transcription activation in cells lacking TAFIIs. Nature 382:185–188.
  • Wu, Y. B., R. J. Reece, and M. Ptashne. 1996. Quantitation of putative activator-target affinities predicts transcriptional activating potentials. EMBO J. 15:3951–3963.
  • Xiao, H., J. D. Friesen, and J. T. Lis. 1995. Recruiting TATA-binding protein to a promoter: transcriptional activation without an upstream activator. Mol. Cell. Biol. 15:5757–5761.
  • Xiao, H., A. Pearson, B. Coulombe, R. Truant, S. Zhang, J. L. Regier, S. J. Triezenberg, D. Reinberg, O. Flores, C. J. Ingles, and J. Greenblatt. 1994. Binding of basal transcription factor TFIIH to the acidic activation domains of VP16 and p53. Mol. Cell. Biol. 14:7013–7024.
  • Yamashita, S., K. Hisatake, T. Kokubo, K. Doi, R. G. Roeder, M. Horikoshi, and Y. Nakatani. 1993. Transcription factor TFIIB sites important for interaction with promoter-bound TFIID. Science 261:463–466.
  • Young, R. A. Personal communication.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.