31
Views
94
CrossRef citations to date
0
Altmetric
Research Article

Vac7p, a Novel Vacuolar Protein, Is Required for Normal Vacuole Inheritance and Morphology

, &
Pages 6847-6858 | Received 25 Jun 1997, Accepted 17 Sep 1997, Published online: 29 Mar 2023

References

  • Acharya, U., R. Jacobs, J.-M. Peters, N. Watson, M. G. Farquhar, and V. Malhotra. 1995. The formation of Golgi stacks from vesiculated Golgi membranes requires two distinct fusion events. Cell 82:859–904.
  • Banta, L. M., J. S. Robinson, D. J. Klionsky, and S. D. Emr. 1988. Organelle assembly in yeast: characterization of yeast mutants defective in vacuolar biogenesis and protein sorting. J. Cell Biol. 107:1369–1383.
  • Baudin, A., O. Ozier-Kalogeropoulos, A. Denouel, F. Lacroute, and C. Cullin. 1993. A simple and ef(r)cient method for direct gene deletion in Saccharomyces cerevisiae. Nucleic Acids Res. 21:3329–3330.
  • Belde, P. J. M., J. H. Vossen, G. H. F. H. Borst-Pauwels, and A. P. R. Theuvenet. 1993. Inositol 1,4,5-triphosphate releases Ca2+from vacuolar membrane vesicles of Saccharomyces cerevisiae. FEBS Lett. 323:113–118.
  • Bergez, P., F. Doignon, and M. Crouzet. 1995. The sequence of a 44,420 bp fragment located on the left arm of the chromosome XIV from Saccharomyces cerevisiae. Yeast 11:967–974.
  • Berkower, C., D. Loayza, and S. Michaelis. 1994. Metabolic instability and constitutive endocytosis of STE6, the a-factor transporter of Saccharomyces cerevisiae. Mol. Biol. Cell 5:1185–1198.
  • Cardenas, M. E., and J. Heitman. 1995. FKBP12-rapamycin target TOR2 is a vacuolar protein with an associated phosphatidylinositol-4 kinase activity. EMBO J. 14:5892–5907.
  • Conibear, E., and T. H. Stevens. 1995. Vacuolar biogenesis in yeast: sorting out the sorting proteins. Cell 83:513–516.
  • Davis, R. W., M. Thomas, J. Cameron, T. P. St. John, S. Scherer, and R. A. Padgett. 1980. Rapid DNA isolation for enzymatic and hybridization analysis. Methods Enzymol. 65:404–411.
  • De Camilli, P. 1995. Molecular mechanisms in synaptic vesicle recycling. FEBS Lett. 369:3–12.
  • Duzgunes, N., J. Wilschut, R. Fraley, and D. Papahadjopoulos. 1981. Studies on the mechanism of fusion: role of head-group composition in calcium- and magnesium-induced fusion of mixed phospholipid vesicles. Biochim. Biophys. Acta 642:182–195.
  • Gammie, A. E., L. J. Kurihara, R. B. Vallee, and M. D. Rose. 1995. DNM1, a dynamin-related gene, participates in endosomal trafficking in yeast. J. Cell Biol. 130:553–566.
  • Gietz, R. D., A. Jean, R. A. Woods, and R. H. Schiestl. 1992. Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res. 8:1425.
  • Gomes de Mesquita, D. S., R. ten Hoopen, and C. L. Woldringh. 1991. Vacuolar segregation to the bud of S. cerevisiae: an analysis of the morphology and timing in the cell cycle. J. Gen. Microbiol. 137:2447–2454.
  • Gomes de Mesquita, D. S., B. van den Haazel, J. Bouwman, and C. L. Woldringh. 1996. Characterization of new vacuolar segregation mutants, isolated by screening for loss of proteinase B self-activation. Eur. J. Cell Biol. 71:237–247.
  • Guan, K., L. Farh, T. K. Marshall, and R. J. Deschenes. 1993. Normal mitochondrial structure and genome maintenance in yeast requires the dynamin-like product of the MGM1 gene. Curr. Genet. 24:141–148.
  • Haas, A., and W. Wickner. 1996. Homotypic vacuole fusion requires Sec17p (yeast alpha-SNAP) and Sec18p (yeast NSF). EMBO J. 15:3296–3305.
  • Hay, J. C., P. L. Fisette, G. H. Jenkins, K. Fukami, T. Takenawa, R. A. Anderson, and T. F. J. Martin. 1995. ATP-dependent inositide phosphorylation required for Ca2+-activated secretion. Nature 374:173–177.
  • Heitman, J., N. R. Movva, and M. N. Hall. 1991. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 253:905–909.
  • Hill, K. L., N. L. Catlett, and L. S. Weisman. 1996. Actin and myosin function in directed vacuole movement during yeast cell division in Saccharomyces cerevisiae. J. Cell Biol. 135:1535–1549.
  • Jones, B. A., and W. L. Fangman. 1992. Mitochondrial DNA maintenance in yeast requires a protein containing a region related to the GTP-binding domain of dynamin. Genes Dev. 6:380–389.
  • Kaiser, C., S. Michaelis, and A. Mitchell. 1994. Methods in yeast genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Kane, P. M., M. C. Kuehn, I. Howald-Stevenson, and T. H. Stevens. 1992. Assembly and targeting of peripheral and integral membrane subunits of the yeast vacuolar H+-ATPase. J. Biol. Chem. 267:447–454.
  • Klionsky, D. J., H. Nelson, and N. Nelson. 1992. Compartment acidification is required for efficient sorting of proteins to the vacuole in Saccharomyces cerevisiae. J. Biol. Chem. 267:3416–3422.
  • Koenig, J. H., and K. Ikeda. 1989. Disappearance and reformation of synaptic vesicle membrane upon transmitter release observed under reversible blockage of membrane retrieval. J. Neurosci. 9:3844–3860.
  • Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685.
  • Latterich, M., K.-U. Frohlich, and R. Schekman. 1995. Membrane fusion and the cell cycle: Cdc48p participates in the fusion of ER membranes. Cell 82:885–893.
  • Liscovitch, M., V. Chalifa, P. Pertile, C.-S. Chen, and L. C. Cantley. 1994. Novel function of phosphatidylinositol 4,5-bisphosphate as a cofactor for brain membrane phospholipase D. J. Biol. Chem. 269:21403–21406.
  • Mellman, I. 1994. Membranes and sorting. Curr. Opin. Cell Biol. 6:497–498.
  • Michaelis, S. (Johns Hopkins University). Personal communication.
  • Ohashi, M., K. Jan de Vries, R. Frank, G. Snoek, V. Bankaitis, K. Wirtz, and W. B. Huttner. 1995. A role for phosphatidylinositol transfer protein in secretory vesicle formation. Nature 377:544–547.
  • Rabouille, C., T. P. Levine, J.-M. Peters, and G. Warren. 1995. An NSF-like ATPase, p97, and NSF mediate cisternal regrowth from mitotic Golgi fragments. Cell 82:905–914.
  • Raymond, C. K., I. Howald-Stevenson, C. A. Vater, and T. H. Stevens. 1992. Morphological classification of the yeast vacuolar protein sorting mutants: evidence for a prevacuolar compartment in class E vps mutants. Mol. Biol. Cell 3:1389–1402.
  • Robinson, J. S., D. J. Klionsky, L. M. Banta, and S. D. Emr. 1988. Protein sorting in Saccharomyces cerevisiae: isolation of mutants defective in the delivery and processing of multiple vacuolar hydrolases. Mol. Cell. Biol. 8:4936–4948.
  • Roeder, A. D., D. Otsuga, and J. M. Shaw (University of Utah). Personal communication.
  • Rothman, J. E., C. K. Raymond, T. Gilbert, P. J. O’Hara, and T. H. Stevens. 1990. A putative GTP binding protein homologous to interferon-inducible Mx proteins performs an essential function in yeast protein sorting. Cell 61:1063–1074.
  • Rothman, J. E., and F. T. Wieland. 1996. Protein sorting by transport vesicles. Science 272:227–234.
  • Schneider, B. L., W. Seufert, B. Steiner, Q. H. Yang, and A. B. Futcher. 1995. Use of polymerase chain reaction epitope tagging for protein tagging in Saccharomyces cerevisiae. Yeast 11:1265–1274.
  • Sears, L. E., L. S. Moran, C. Kissinger, T. Creasey, H. Perry-O’Keefe, M. Roskey, E. Sutherland, and B. S. Slatko. 1992. Circum Vent thermal cycle sequencing and alternative manual and automated DNA sequencing protocols using highly thermostable VentR (exo-) DNA polymerase. BioTechniques 13:626–633.
  • Sikorski, R. S., and P. Hieter. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27.
  • Simon, J., I. E. Ivanov, M. Adesnik, and D. D. Sabatini. 1996. The production of post-Golgi vesicles requires a protein kinase C-like molecule, but not its phosphorylating activity. J. Cell Biol. 135:355–370.
  • Skinner, H. B., T. P. McGee, C. R. McMaster, M. R. Fry, R. M. Bell, and V. A. Bankaitis. 1995. The Saccharomyces cerevisiae phosphatidylinositol-transfer protein effects a ligand-dependent inhibition of choline-phosphate cytidylyltransferase activity. Proc. Natl. Acad. Sci. USA 92:112–116.
  • Stack, J. H., B. Horazdovsky, and S. D. Emr. 1995. Receptor-mediated protein sorting to the vacuole in yeast: roles for a protein kinase, a lipid kinase and GTP-binding proteins. Annu. Rev. Cell Dev. Biol. 11:1–33.
  • Sullivan, K. M. C., W. B. Busa, and K. L. Wilson. 1993. Calcium mobilization is required for nuclear vesicle fusion in vitro: implications for membrane traffic and IP3 receptor function. Cell 73:1411–1422.
  • Sundler, R., N. Duzgunes, and D. Papahadjopoulos. 1981. Control of membrane fusion by phospholipid head groups. The role of phosphatidylethanolamine in mixtures with phosphatidate and phosphatidylinositol. Biochim. Biophys. Acta 649:751–758.
  • Sundler, R., and D. Papahadjopoulos. 1981. Control of membrane fusion by phospholipid head groups. Phosphatidate/phosphatidylinositol specificity. Biochim. Biophys. Acta 649:743–750.
  • Takei, K., P. S. McPherson, S. L. Schmid, and P. De Camilli. 1995. Tubular membrane invaginations coated by dynamin rings are induced by GTP-?S in nerve terminals. Nature 374:186–190.
  • Takei, K., O. Mundigl, L. Daniell, and P. De Camilli. 1996. The synaptic vesicle cycle: a single vesicle budding step involving clathrin and dynamin. J. Cell Biol. 133:1237–1250.
  • Towbin, H., T. Staehelin, and J. Gordon. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA 76:4350–4354.
  • Uchida, E., Y. Ohsumi, and Y. Anraku. 1988. Purification of yeast vacuolar membrane H+-ATPase and enzymological discrimination of three ATP- driven proton pumps in Saccharomyces cerevisiae. Methods Enzymol. 157:544–563.
  • Vida, T. A., and S. D. Emr. 1995. A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast. J. Cell Biol. 128:779–792.
  • Wang, Y.-X., N. L. Catlett, and L. S. Weisman. Submitted for publication.
  • Wang, Y.-X., H. Zhao, T. Harding, D. S. Gomes de Mesquita, C. L. Woldringh, D. J. Klionsky, A. L. Munn, and L. S. Weisman. 1996. Multiple classes of yeast mutants are defective in vacuole partitioning yet target vacuole proteins correctly. Mol. Biol. Cell 7:1375–1389.
  • Warren, G., and W. Wickner. 1996. Organelle inheritance. Cell 84:395–400.
  • Weisman, L. S., R. Bacallao, and W. Wickner. 1987. Multiple methods of visualizing the yeast vacuole permit evaluation of its morphology and inheritance during the cell cycle. J. Cell Biol. 105:1539–1547.
  • Weisman L. S., S. D. Emr, and W. Wickner. 1990. Mutants of Saccharomyces cerevisiae that block intervacuole vesicular traffic and vacuole division and segregation. Proc. Natl. Acad. Sci. USA 87:1067–1080.
  • Weisman, L. S., and W. Wickner. 1988. Intervacuole exchange in the yeast zygote: a new pathway in organelle communication. Science 241:589–591.
  • Weisman, L. S., and W. Wickner. 1992. Molecular characterization of VAC1, a gene required for vacuole inheritance and vacuole protein sorting. J. Cell Biol. 267:618–623.
  • Xu, Z., A. Mayer, E. Muller, and W. Wickner. 1997. A heterodimer of thioredoxin and IB2 cooperates with Sec18p (NSF) to promote yeast vacuole inheritance. J. Cell Biol. 136:299–306.
  • Yamamoto, A., D. B. DeWald, I. V. Boronenkov, R. A. Anderson, S. D. Emr, and D. Koshland. 1995. Novel PI(4)P 5-kinase homologue, Fab1p, essential for normal vacuole function and morphology in yeast. Mol. Biol. Cell 6:525–539.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.