29
Views
58
CrossRef citations to date
0
Altmetric
Research Article

Sin Mutations of Histone H3: Influence on Nucleosome Core Structure and Function

&
Pages 6953-6969 | Received 17 Jul 1997, Accepted 05 Sep 1997, Published online: 29 Mar 2023

References

  • Almer, A., H. Rudolph, A. Hinnen, and W. Horz. 1986. Removal of positioned nucleosomes from the yeast PHO5 promoter upon PHO5 induction releases additional activating DNA elements. EMBO J. 5:2689–2696.
  • Almer, A., and W. Horz. 1986. Nuclease hypersensitive regions with adjacent positioned nucleosomes mark the gene boundaries of the PHO5/ PHO3 locus in yeast. EMBO J. 5:2681–2688.
  • Arents, G., R. W. Burlingame, B. W. Wang, W. E. Love, and E. N. Moudrianakis. 1991. The nucleosomal core histone octamer at 3.1Å resolution: a tripartite protein assembly and a left-handed superhelix. Proc. Natl. Acad. Sci. USA 88:10148–10152.
  • Arents, G., and E. N. Moudrianakis. 1993. Topography of the histone octamer surface: repeating structural motifs utilized in the docking of nucleosomal DNA. Proc. Natl. Acad. Sci. USA 90:10489–10493.
  • Barlev, N. A., R. Candau, L. Wang, P. Darpino, N. Silverman, and S. L. Berger. 1995. Characterization of physical interactions of the putative transcriptional adaptor ADA2 with acidic activation domains and TATA-binding-protein. J. Biol. Chem. 270:19337–19343.
  • Bashkin, J., J. J. Hayes, T. D. Tullius, and A. P. Wolffe. 1993. Structure of DNA in a nucleosome core at high salt concentration and at high temperature. Biochemistry 32:1895–1898.
  • Baer, B. W., and D. Rhodes. 1983. Eukaryotic RNA polymerase II binds to nucleosome cores from transcribed genes. Nature (London) 301:482–488.
  • Bauer, W. R., J. J. Hayes, J. H. White, and A. P. Wolffe. 1994. Nucleosome structural changes due to acetylation. J. Mol. Biol. 236:685–690.
  • Beato, M., P. Herrlich, and G. Schultz. 1995. Steroid hormone receptors: many actors in search of a plot. Cell 83:851–857.
  • Becker, P. B. 1994. The establishment of active promoters in chromatin. Bioessays 16:541–547.
  • Birkenmeier, E. H., D. D. Brown, and E. Jordan. 1978. A nuclear extract of Xenopus laevis oocytes that accurately transcribes 5S RNA genes. Cell 15:1077–1086.
  • Brownell, J. E., J. Zhou, T. Ranalli, R. Kobayashi, D. G. Edmondson, S. Y. Roth, and C. D. Allis. 1996. Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell 84:843–851.
  • Burkhoff, A. M., and T. D. Tullius. 1988. Structural details of an adenine tract that does not cause DNA to bend. Nature (London) 331:455–457.
  • Cairns, B. R., Y. J. Kim, M. H. Sayre, B. C. Laurent, and R. D. Kornberg. 1994. A multisubunit complex containing the SWIA/ADR6, SWI2/SNF2, SWI3/SNF5 and SNF6 gene products isolated from yeast. Proc. Natl. Acad. Sci. USA 91:1950–1954.
  • Cairns, B. R., Y. Lorch, Y. Li, M. Zhang, L. Lacomis, H. Evdjument-Bromage, P. Tempst, J. Du, B. Laurent, and R. D. Kornberg. 1996. RSC, an essential, abundant chromatin-remodeling complex. Cell 87:1249–1260.
  • Camerini-Otero, R. D., B. Sollner-Webb, and G. Felsenfeld. 1976. The organization of histones and DNA in chromatin: evidence for an argininerich histone kernel. Cell 8:333–347.
  • Carlson, M., and B. C. Laurent. 1994. The SNF/SWI family of global transcriptional activators. Curr. Opin. Cell Biol. 6:396–402.
  • Clark, D. J., and A. P. Wolffe. 1991. Superhelical stress and nucleosome mediated repression of 5S RNA gene transcription in vitro. EMBO J. 10:3419–3428.
  • Clark-Adams, C. D., D. Norris, M. A. Osley, J. S. Fassler, and F. Winston. 1988. Changes in histone gene dosage alter transcription in yeast. Genes Dev. 2:150–159.
  • Côté, J., J. Quinn, J. L. Workman, and C. L. Peterson. 1994. Stimulation of GAL4 derivative binding to nucleosomal DNA by the yeast SWI/SNF complex. Science 265:53–60.
  • Dallas, P. B., P. Yaciuk, and E. Moran. 1997. Characterization of monoclonal antibodies raised against p300: both p300 and CBP are present in intracellular TBP complexes. J. Virol. 71:1726–1731.
  • Dong, F., and K. E. van Holde. 1991. Nucleosome positioning is determined by the (H3-H4)2 tetramer. Proc. Natl. Acad. Sci. USA 88:10596–10600.
  • Dong, F., J. C. Hansen, and K. E. van Holde. 1989. DNA and protein determinants of nucleosome positioning on sea urchin 5S rRNA gene sequences in vitro. Proc. Natl. Acad. Sci. USA 87:5724–5728.
  • Edmondson, D. G., M. M. Smith, and S. Y. Roth. 1996. Repression domain of the yeast global repressor Tup1 interacts directly with histones H3 and H4. Genes Dev. 10:1247–1259.
  • Eickbusch, T. H., and E. N. Moudrianakis. 1978. The histone core complex: an octamer assembled by two sets of protein-protein interactions. Biochemistry 17:4955–4967.
  • Fassler, J. S., and F. Winston. 1988. Isolation and analysis of a novel class of suppressor of Ty insertion mutations in Saccharomyces cerevisiae. Genetics 118:112–132.
  • Fisher-Adams, G., and M. Grunstein. 1995. Yeast histone H4 and H3 N-termini have different effects on the chromatin structure of the Gal1 promoter. EMBO J. 14:1468–1477.
  • Freeman, L., H. Kurumizaka, and A. P. Wolffe. 1996. Functional domains for assembly of histones H3 and H4 into the chromatin of Xenopus embryos. Proc. Natl. Acad. Sci. USA 93:12780–12785.
  • Gaudreau, L., A. Schmid, D. Blaschke, M. Ptashne, and W. Horz. 1997. RNA polymerase II holoenzyme recruitment is sufficient to remodel chromatin at the yeast PHO5 promoter. Cell 89:55–62.
  • Germond, J. E., B. Hirt, P. Oudet, M. Gross-Bellard, and P. Chambon. 1975. Folding of the double helix in chromatin like structures from simian virus 40. Proc. Natl. Acad. Sci. USA 72:1843–1847.
  • Godde, J. S., and A. P. Wolffe. 1995. Disruption of reconstituted nucleosomes: the effect of particle concentration MgCl2, and KCl concentration, the histone tails and temperature. J. Biol. Chem. 270:27399–27402.
  • Godde, J. S., Y. Nakatani, and A. P. Wolffe. 1995. The amino-terminal tails of the core histones and the translational position of the TATA box determine TBP/TFIIA association with nucleosomal DNA. Nucleic Acids Res. 23:4557–4564.
  • Grunstein, M., L. K. Durrin, R. K. Mann, G. Fisher-Adams, and L. M. Johnson. 1992. Histones: regulators of transcription in yeast, p. 1295–1315. In S. McKnight and K. Yamamoto (ed.), Transcriptional regulation. Cold Spring Harbor Press, Cold Spring Harbor, N.Y.
  • Han, M., and M. Grunstein. 1988. Nucleosome loss activates yeast downstream promoters in vivo. Cell 55:1137–1145.
  • Han, M., U.-J. Kim, P. Kayne, and M. Grunstein. 1988. Depletion of histone H4 and nucleosomes activates the PHO5 gene in Saccharomyces cerevisiae. EMBO J. 7:2221–2228.
  • Hansen, J. C., and A. P. Wolffe. 1994. A role for histones H2A/H2B in chromatin folding and transcriptional repression. Proc. Natl. Acad. Sci. USA 91:2339–2343.
  • Hayes, J. J., and A. P. Wolffe. 1992. Histone H2A/H2B inhibit the interaction of TFIIIA with 5S DNA in a nucleosome. Proc. Natl. Acad. Sci. USA 89:1229–1233.
  • Hayes, J. J., and A. P. Wolffe. 1993. Preferential and asymmetric interaction of linker histones with 5S DNA in the nucleosome. Proc. Natl. Acad. Sci. USA 90:6415–6419.
  • Hayes, J. J., T. D. Tullius, and A. P. Wolffe. 1990. The structure of DNA in a nucleosome. Proc. Natl. Acad. Sci. USA 87:7405–7409.
  • Hayes, J. J., D. J. Clark, and A. P. Wolffe. 1991. Histone contributions to the structure of DNA in the nucleosome. Proc. Natl. Acad. Sci. USA 88:6829–6833.
  • Hayes, J. J., J. Bashkin, T. D. Tullius, and A. P. Wolffe. 1991. The histone core exerts a dominant constraint on the structure of DNA in a nucleosome. Biochemistry 30:8434–8440.
  • Herskowitz, I., B. Andrews, W. Kruger, J. Ogas, A. Sil, C. Coburn, and C. Peterson. 1992. Integration of multiple regulatory inputs in the control of HO expression in yeast, p. 949–974. In S. McKnight and K. Yamamoto (ed.), vol. 2. Transcriptional regulation, vol. 2. Cold Spring Harbor Press, Cold Spring Harbor, N.Y.
  • Hirschhorn, J. N., S. A. Brown, C. D. Clark, and F. Winston. 1992. Evidence that SNF2/SWI2 and SNF activate transcription in yeast by altering chromatin structure. Genes Dev. 6:2288–2298.
  • Imbalzano, A. M., H. Kwon, M. R. Green, and R. E. Kingston. 1994. Facilitated binding of TATA-binding protein to nucleosomal DNA. Nature 370:481–485.
  • Johnson, L. M., P. S. Kayne, E. S. Kahn, and M. Grunstein. 1990. Genetic evidence for an interaction between SIR3 and histone H4 in the repression of silent mating loci in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 87:6286–6290.
  • Karantza, V., E. Freire, and E. N. Moudrianakis. 1996. Thermodynamic studies of the core histones: pH and ionic strength effects on the stability of the (H3-H4)/(H3-H4)2 system. Biochemistry 35:2037–2046.
  • Kayne, P. S., U. J. Kim, M. Han, J. R. Mullen, F. Yoshizaki, and M. Grunstein. 1988. Extremely conserved histone H4 N-terminus is dispensible for growth but essential for repressing the silent mating loci in yeast. Cell 55:27–39.
  • Khavari, P. A., C. L. Peterson, J. W. Tamkun, D. B. Mendel, and G. R. Crabtree. 1993. BRG1 contains a conserved domain of the SWI2/SNF2 family necessary for normal mitotic growth and transcription. Nature 366:170–174.
  • Kruger, W., and I. Herskowitz. 1991. A negative regulator of HO transcription, SIN1 (SPT2), is a nonspecific DNA binding protein related to HMG1. Mol. Cell. Biol. 11:4135–4146.
  • Kruger, W., C. L. Peterson, A. Sil, C. Coburn, G. Arents, E. N. Moudrianakis, and I. Herskowitz. 1995. Amino acid substitutions in the structured domains of histones H3 and H4 partially relieve the requirement of the yeast SWI/SNF complex for transcription. Genes Dev. 9:2770–2779.
  • Kwon, H., A. N. Imbalzano, P. A. Khavarl, R. E. Kingston, and M. R. Green. 1994. Nucleosome disruption and enhancement of activator binding by a human SWI/SNF complex. Nature 370:477–481.
  • Landsberger, N., and A. P. Wolffe. 1995. The role of chromatin and Xenopus heat shock transcription factor (XHSF1) in the regulation of the Xenopus hsp70 promoter in vivo. Mol. Cell. Biol. 15:6013–6024.
  • Landsberger, N., and A. P. Wolffe. 1997. Remodeling of regulatory nucleoprotein complexes during meiotic maturation of the Xenopus oocyte. EMBO J. 16:4361–4373.
  • Laurent, B. C., and M. Carlson. 1992. Yeast SNF2/SWI2, SNF5 and SNF6 proteins function coordinately with the gene-specific transcriptional activators Gal4 and bicoid. Genes Dev. 6:1707–1715.
  • Laurent, B. C., I. Treich, and M. Carlson. 1993. The yeast SNF2/SWI2 protein has DNA stimulated ATPase activity required for transcriptional activation. Genes Dev. 7:583–591.
  • Lee, D. Y., J. J. Hayes, D. Pruss, and A. P. Wolffe. 1993. A positive role for histone acetylation in transcription factor binding to nucleosomal DNA. Cell 72:73–84.
  • Lutter, L. 1978. Kinetic analysis of deoxyribonuclease I cleavage sites in the nucleosome core: evidence for a DNA superhelix. J. Mol. Biol. 124:391–420.
  • Meersseman, G., S. Pennings, and E. M. Bradbury. 1991. Chromatosome positioning on assembled long chromatin: linker histones affect nucleosome placement on 5S DNA. J. Mol. Biol. 220:89–100.
  • Meersseman, G., S. Pennings, and E. M. Bradbury. 1992. Mobile nucleo-somes-a general behavior. EMBO J. 11:2951–2959.
  • Mizzen, C. A., X. J. Yang, T. Kobuko, J. E. Brownell, A. J. Banister, T. Owen-Hughes, J. Workman, S. L. Berger, T. Kouzarides, Y. Nakatani, and C. D. Allis. 1996. The TAFII250 subunit of TFIID has histone acetyltransferase activity. Cell 87:1261–1270.
  • Muchardt, C., and M. Yaniv. 1993. A human homolog of Saccharomyces cerevisiae SNF2/SWI2 and Drosophila brm genes potentiates transcriptional activation by the glucocorticoid receptor. EMBO J. 12:4279–4290.
  • Muchardt, C., C. Sardet, B. Bourachot, C. Onufryk, and M. Yaniv. 1995. A human protein with homology to S. cerevisiae SNF5 interacts with the potential helicase hbrm. Nucleic Acids Res. 23:1127–1132.
  • Neigeborn, L., K. Rubin, and H. Carlson. 1986. Suppressors of snf2 mutations restore invertase derepression and cause temperature sensitive lethality in yeast. Genetics 112:741–753.
  • Noll, M., and R. D. Kornberg. 1977. Action of micrococcal nuclease on chromatin and the location of histone H1. J. Mol. Biol. 109:393–404.
  • Ogryzko, V. V., R. L. Schiltz, V. Russanova, B. H. Howard, and Y. Nakatani. 1996. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87:953–959.
  • Perry, M., G. H. Thomson, and R. G. Roeder. 1985. The nucleotide sequence and genomic organization of two distinct tandemly repeated Xenopus laevis histone gene clusters. J. Mol. Biol. 185:479–499.
  • Peterson, C. L., W. Kruger, and I. Herskowitz. 1991. A functional interaction between the C-terminal domain of RNA polymerase II and the negative regulator SIN1. Cell 64:1135–1143.
  • Peterson, C. L., and I. Herskowitz. 1992. Characterization of the yeast SWI1, SWI2 and SWI3 genes which encode a global activator of transcription. Cell 68:573–584.
  • Peterson, C. L., A. Dingwall, and M. P. Scott. 1994. SWI/SNF gene products are components of a large multisubunit complex required for transcriptional enhancement. Proc. Natl. Acad. Sci. USA 91:2905–2908.
  • Peterson, C. L., and J. W. Tamkun. 1995. The SWI/SNF complex: a chromatin remodeling machine? Trends Biochem. Sci. 20:143–146.
  • Peterson, C. L. 1995. The SWI/SNF protein machine: helping transcription factors contend with chromatin-mediated repression. Nucleus 1:185–206.
  • Pruss, D., and A. P. Wolffe. 1993. Histone-DNA contacts in a nucleosome core containing a Xenopus 5S rRNA gene. Biochemistry 32:6810–6814.
  • Pruss, D., J. J. Hayes, and A. P. Wolffe. 1995. Nucleosomal anatomy— where are the histones? Bioessays 17:161–170.
  • Quinn, J., A. M. Fyrberg, R. W. Ganster, M. C. Schmidt, and C. L. Peterson. 1996. DNA-binding properties of the yeast SWI/SNF complex. Nature 379:844–847.
  • Read, C. M., J. P. Baldwin, and C. Crane-Robinson. 1985. Structure of subnucleosomal particles tetrameric (H3/H4)2 146 base pair and hexameric (H3/H4)2 (H2A/H2B)1 146bp DNA complexes. Biochemistry 24:4435–4450.
  • Rhodes, D. 1985. Structural analysis of a triple complex between the histone octamer, a Xenopus gene for 5S RNA and transcription factor IIIA. EMBO J. 4:3473–3482.
  • Roth, S. Y., A. Dean, and R. T. Simpson. 1990. Yeast α2 repressor positions nucleosomes in TRP1/ARS1 chromatin. Mol. Cell. Biol. 10:2247–2260.
  • Roth, S. Y., M. Shimizu, L. Johnson, M. Grunstein, and R. T. Simpson. 1992. Stable nucleosome positioning and complete repression by the yeast α2 repressor are disrupted by amino-terminal mutation in histone H4. Genes Dev. 6:411–425.
  • Simon, R. H., and G. Felsenfeld. 1979. A new procedure for purifying histone pairs H2A+H2B and H3+H4 from chromatin using hydroxylapatite. Nucleic Acids Res. 6:689–696.
  • Simpson, R. T., and D. W. Stafford. 1983. Structural features of a phased nucleosome core particle. Proc. Natl. Acad. Sci. USA 80:51–55.
  • Simpson, R. T., F. Thoma, and J. M. Brubaker. 1985. Chromatin reconstituted from tandemly repeated cloned DNA fragments and core histones: a model system for study of higher order structure. Cell 42:799–808.
  • Svaren, J., and W. Horz. 1995. Interplay between nucleosomes and transcription factors at the yeast PHO5 promoter. Semin. Cell Biol. 6:177–183.
  • Svaren, J., and W. Horz. 1996. Regulation of gene expression by nucleosomes. Curr. Opin. Genet. Dev. 6:164–170.
  • Taunton, J., C. A. Hassig, and S. L. Schreiber. 1996. A mammalian histone deacetylase related to a yeast transcriptional regulator Rpd3. Science 272:408–411.
  • Tsukiyama, T., P. B. Becker, and C. Wu. 1994. ATP-dependent nucleosome disruption at a heat-shock promoter mediated by binding of GAGA transcription factor. Nature 367:525–532.
  • Tsukiyama, T., and C. Wu. 1995. Purification and properties of an ATP dependent nucleosome remodeling factor. Cell 83:1011–1020.
  • Tullius, T. D., and B. A. Dombroski. 1985. Iron (II) EDTA used to measure the helical twist along any DNA molecule. Science 230:679–681.
  • Ura, K., J. J. Hayes, and A. P. Wolffe. 1995. A positive role for nucleosome mobility in the transcriptional activity of chromatin templates: restriction by linker histones. EMBO J. 14:3752–3765.
  • Ura, K., K. Nightingale, and A. P. Wolffe. 1996. Differential association of HMG1 and linker histones B4 and H1 with dinucleosomal DNA: structural transitions and transcriptional repression. EMBO J. 15:4959–4969.
  • Ura, K., H. Kurumizaka, S. Dimitrov, G. Almouzni, and A. P. Wolffe. 1997. Histone acetylation: influence on transcription by RNA polymerase, nucleosome mobility and positioning, and linker histone dependent transcriptional repression. EMBO J. 16:2096–2107.
  • Varga-Weisz, P. D., T. A. Blank, and P. B. Becker. 1995. Energy-dependent chromatin accessibility and nucleosome mobility in a cell free system. EMBO J. 14:2209–2216.
  • Vettese-Dadey, M., P. A. Grant, T. R. Hebbes, C. Crane-Robinson, C. D. Allis, and J. L. Workman. 1996. Acetylation of histone H4 plays a primary role in enhancing transcription factor binding to nucleosomal DNA in vitro. EMBO J. 15:2508–2518.
  • Vettesse-Dadey, M., P. Walter, H. Chen, L.-J. Juan, and J. L. Workman. 1994. Role of the histone amino termini in facilitated binding of a transcription factor, GAL4-AH, to nucleosome cores. Mol. Cell. Biol. 14:970–981.
  • Vidal, M., R. Strich, R. E. Esposito, and R. F. Gaber. 1991. RPD1 (SIN3/ UME4) is required for maximal activation and repression of diverse yeast genes. Mol. Cell. Biol. 11:6306–6316.
  • Vidal, M., and R. F. Gaber. 1991. RPD3 encodes a second factor required to achieve maximum positive and negative transcriptional states in Saccharomyces cerevisiae. Mol. Cell. Biol. 11:6317–6327.
  • Wall, G., P. D. Varga-Weisz, R. Sandaltzopoulos, and P. B. Becker. 1995. Chromatin remodeling by GAGA factor and heat shock factor at the hypersensitive Drosophila hsp26 promoter in vitro. EMBO J. 14:1727–1736.
  • Wang, H., and D. J. Stillman. 1993. Transcriptional repression in Saccharomyces cerevisiae by a SIN3-LexA fusion protein. Mol. Cell. Biol. 13:1805–1814.
  • Wang, H., I. Clark, P. R. Nicholon, I. Herskowitz, and D. J. Stillman. 1990. The Saccharomyces cerevisiae SIN3 gene a negative regulator of HO contains four paired amphipathic helix motifs. Mol. Cell. Biol. 10:5927–5936.
  • Wechser, M. A., M. P. Kladde, J. A. Alfieri, and C. L. Peterson. 1997. Effects of Sin versions of histone H4 on yeast chromatin structure and function. EMBO J. 16:2086–2095.
  • White, J. H., N. R. Cozzarelli, and W. R. Bauer. 1988. Helical repeat and linking number of surface wrapped DNA. Science 241:323–327.
  • Wilson, C. J., D. M. Chao, A. N. Imbalzano, G. R. Schnitzer, R. Kingston, and R. A. Young. 1996. RNA polymerase II holoenzyme contains SWI/SNF regulators involved in chromatin remodeling. Cell 84:235–244.
  • Winston, F., and M. Carlson. 1992. Yeast SNF/SWI transcriptional activators and the SPT/SIN chromatin connection. Trends Genet. 8:387–391.
  • Wolffe, A. P. 1994. Switched-on chromatin. Curr. Biol. 4:525–527.
  • Wolffe, A. P. 1995. Chromatin: structure and function, 2nd ed. Academic Press, London, England.
  • Wolffe, A. P., and J. J. Hayes. 1993. The analysis of transcription factor interactions with model nucleosomal templates. Methods Mol. Genet. 2:314–330.
  • Wolffe, A. P., E. Jordan, and D. D. Brown. 1986. A bacteriophage RNA polymerase transcribes through a Xenopus 5S RNA gene transcription complex without disrupting it. Cell 44:381–389.
  • Worcel, A., S. Han, and M. L. Wong. 1978. Assembly of newly replicated chromatin. Cell 15:969–977.
  • Wray, W., T. Boulikas, V. Wray, and R. Hancock. 1981. Silver staining of proteins in polyacrylamide gels. Anal. Biochem. 118:197–203.
  • Yang, X.-J., V. V. Ogryzko, J.-I. Nishikawa, B. Howard, and Y. Nakatani. 1996. A p300/CBP-associated factor that competes with the adenoviral E1A oncoprotein. Nature 382:319–324.
  • Yoshinaga, S. K., S. L. Peterson, I. Herskowitz, and K. R. Yamamoto. 1992. Roles of SWI1, SWI2, and SWI3 proteins for transcriptional enhancement by steroid receptors. Science 258:1598–1604.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.