1
Views
10
CrossRef citations to date
0
Altmetric
Research Article

SSP1, a Gene Necessary for Proper Completion of Meiotic Divisions and Spore Formation in Saccharomyces cerevisiae

, &
Pages 7029-7039 | Received 17 Jun 1997, Accepted 10 Sep 1997, Published online: 29 Mar 2023

References

  • Alani, E., R. Padmore, and N. Kleckner. 1990. Analysis of wild-type and rad50 mutants of yeast suggests an intimate relationship between meiotic chromosome synapsis and recombination. Cell 61:419–436.
  • Baker, B. S., A. T. C. Carpenter, M. S. Esposito, R. E. Esposito, and L. Sandler. 1976. The genetic control of meiosis. Annu. Rev. Genet. 10:53–134.
  • Bishop, D. K., D. Park, L. Xu, and N. Kleckner. 1992. DMC1: a meiosis-specific yeast homolog of E. coli recA required for recombination, synaptonemal complex formation, and cell cycle progression. Cell 69:439–456.
  • Burns, N., B. Grimwade, P. B. Ross-Macdonald, E.-Y. Choi, K. Finberg, G. S. Roeder, and M. Snyder. 1994. Large-scale analysis of gene expression, protein localization, and gene disruption in Saccharomyces cerevisiae. Genes Dev. 8:1087–1105.
  • Byers, B. 1981. Cytology of the yeast life cycle, p. 59–96. In J. N. Strathern, E. W. Jones, and J. Broach (ed.), The molecular biology of the yeast Saccharomyces: life cycle and inheritance. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Chakraborty, D., and U. Maitra. 1993. Eukaryotic translation initiation factor 5 from Saccharomyces cerevisiae. Cloning, characterization, and expression of the gene encoding the 45,346-Da protein. J. Biol. Chem. 268:10524–10533.
  • Clancy, M. J., B. Buten-Magee, D. J. Straight, A. L. Kennedy, R. M. Partridge, and P. T. Magee. 1983. Isolation of genes expressed preferentially during sporulation in the yeast Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 80:3000–3004.
  • Coe, J. G. S., L. E. Murray, C. J. Kennedy, and I. W. Daws. 1992. Isolation and characterization of sporulation-specific promoters in the yeast Saccharomyces cerevisiae. Mol. Microbiol. 6:75–81.
  • Collins, I., and C. S. Newlon. 1994. Chromosomal DNA replication initiates at the same origins in meiosis and mitosis. Mol. Cell. Biol. 14:3524–3534.
  • Davis, L. 1995. The nuclear pore complex. Annu. Rev. Biochem. 64:865–896.
  • Elder, R. T., E. Y. Loh, and R. W. Davis. 1983. RNA from the yeast transposable element Ty1 has both ends in the direct repeats, a structure similar to retrovirus RNA. Proc. Natl. Acad. Sci. USA 80:2432–2436.
  • Esposito, R. E., and S. Klapholz. 1981. Meiosis and ascospore development, p. 211–287. In J. N. Strathern, E. W. Jones, and J. Broach (ed.), The molecular biology of the yeast Saccharomyces: life cycle and inheritance. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Friesen, H., R. Lunz, S. Doyle, and J. Segall. 1994. Mutation in the SPS1- encoded protein kinase of Saccharomyces cerevisiae leads to defects in transcription and morphology during spore formation. Genes Dev. 8:2162–2175.
  • Game, J. C., T. J. Zamb, R. J. Braun, M. A. Resnick, and R. M. Roth. 1980. The role of radiation (rad) genes in meiotic recombination in yeast. Genetics 94:51–68.
  • Gottlin-Ninfa, E., and D. B. Kaback. 1986. Isolation and functional analysis of sporulation-induced transcribed sequences from Saccharomyces cerevisiae. Mol. Cell. Biol. 6:2185–2197.
  • Goyon, C., and M. Lichten. 1993. Timing of molecular events in meiosis in Saccharomyces cerevisiae: stable heteroduplex DNA is formed late in meiotic prophase. Mol. Cell. Biol. 13:373–382.
  • Hartwell, L. H., and T. A. Weinert. 1989. Checkpoints: controls that ensure the order of cell cycle events. Science 246:629–634.
  • Hawley, R. S. 1988. Exchange and chromosomal segregation in eukaryotes, p. 497–527. In R. Kucherlapati and G. Smith (ed.), Genetic recombination. American Society for Microbiology, Washington, D.C.
  • Hollingsworth, N. M., and B. Byers. 1989. HOP1: a yeast meiotic pairing gene. Genetics 121:445–462.
  • Honigberg, S. M., C. Conicella, and R. E. Esposito. 1992. Commitment to meiosis in Saccharomyces cerevisiae: involvement of the SPO14 gene. Genetics 130:703–716.
  • Honigberg, S. M., and R. E. Esposito. 1994. Reversal of cell differentiation in yeast meiosis: postcommitment arrest allows return to mitotic growth. Proc. Natl. Acad. Sci. USA 91:6559–6563.
  • Hugerat, Y., and G. Simchen. 1993. Mixed segregation and recombination of chromosomes and YACs during single-division meiosis in spo13 strains of Saccharomyces cerevisiae. Genetics 135:297–308.
  • Irie, K., K. Yamaguchi, K. Kawase, and K. Matsumoto. 1994. The yeast MOT2 gene encodes a putative zinc finger protein that serves as a global negative regulator affecting expression of several categories of genes, including mating pheromone responsive genes. Mol. Cell. Biol. 14:3150–3157.
  • Kaback, D. B., and L. R. Feldberg. 1985. Saccharomyces cerevisiae exhibits a sporulation-specific temporal pattern of transcript accumulation. Mol. Cell. Biol. 5:751–761.
  • Kleckner, N. 1996. Meiosis: how could it work? Proc. Natl. Acad. Sci. USA 93:8167–8174.
  • Krisak, L., R. Strich, R. Scott Winters, J. Perry Hall, M. Mallory, D. Kreitzer, R. S. Tuan, and E. Winter. 1994. SMK1, a developmentally regulated MAP kinase, is required for spore wall assembly in Saccharomyces cerevisiae. Genes Dev. 8:2151–2161.
  • Kurnit, D. M. 1989. Escherichia coli recA deletion strains that are highly competent for transformation and for in vivo phage packaging. Gene 82:313–315.
  • Kurtz, S., and S. Lindquist. 1984. Changing patterns of gene expression during sporulation in yeast. Proc. Natl. Acad. Sci. USA 81:7323–7327.
  • Law, D. T. S., and J. Segall. 1988. The SPS100 gene of Saccharomyces cerevisiae is activated late in the sporulation process and contributes to spore wall maturation. Mol. Cell. Biol. 8:912–922.
  • Liang, P., L. Averboukh, and A. B. Pardee. 1993. Distribution and cloning of eukaryotic mRNAs by means of differential display: refinements and optimization. Nucleic Acids Res. 21:3269–3275.
  • Liang, P., and A. B. Pardee. 1992. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257:967–971.
  • Lydall, D., Y. Nikolsky, D. K. Bishop, and T. Weinert. 1996. A meiotic recombination checkpoint controlled by mitotic checkpoint genes. Nature 383:840–843.
  • Malone, R. E. 1990. Dual regulation of meiosis in yeast. Cell 61:375–378.
  • Malone, R. E., S. Bullard, M. Hermiston, R. Rieger, M. Cool, and A. Galbraith. 1991. Isolation of mutants defective in early steps of meiotic recombination in the yeast Saccharomyces cerevisiae. Genetics 128:79–88.
  • Maniatis, T., E. F. Fritsch, and J. Sambrook. 1982. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Manivasakam, P., S. C. Weber, J. McElver, and R. H. Schiestl. 1995. Microhomology mediated PCR targeting in Saccharomyces cerevisiae. Nucleic Acids Res. 23:2799–2800.
  • McCarroll, R. M., and R. E. Esposito. 1994. Spo13 negatively regulates the progression of mitotic and meiotic nuclear division in Saccharomyces cerevisiae. Genetics 138:47–60.
  • Mitchell, A. P. 1994. Control of meiotic gene expression in Saccharomyces cerevisiae. Microbiol. Rev. 58:56–70.
  • Padmore, R., L. Cao, and N. Kleckner. 1991. Temporal comparison of recombination and synaptonemal complex formation during meiosis in S. cerevisiae. Cell 66:1239–1256.
  • Percival-Smith, A., and J. Segall. 1984. Isolation of DNA sequences preferentially expressed during sporulation in Saccharomyces cerevisiae. Mol. Cell. Biol. 4:142–150.
  • Petes, T. D., R. E. Malone, and L. S. Symington. 1991. Recombination in yeast, p. 407–521. In J. R. Broach et al. (ed.), The molecular and cellular biology of the yeast Saccharomyces: genome dynamics, protein synthesis and energetics, vol. I. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Pringle, J. R., A. E. M. Adams, D. G. Drubin, and B. K. Haarer. 1991. Immunofluorescence methods for yeast. Methods Enzymol. 194:565–602.
  • Resnick, M. A. 1987. Investigating the genetic control of biochemical events in meiotic recombination, p. 157–210. In P. Moens, (ed.), Meiosis. Academic Press, Inc. New York, N.Y.
  • Rockmill, B., and G. S. Roeder. 1988. RED1: a yeast gene required for the segregation of chromosomes during reductional division of meiosis. Proc. Natl. Acad. Sci. USA 85:6057–6061.
  • Roeder, G. S. 1990. Chromosome synapsis and genetic recombination: their roles in meiotic chromosome segregation. Trends Genet. 6:385–389.
  • Rose, K., S. A. Rudge, M. A. Frohman, A. J. Morris, and J. Engebrecht. 1995. Phospholipase D signaling is essential for meiosis. Proc. Natl. Acad. Sci. USA 92:12151–12155.
  • Rose, M. D., F. Winston, and P. Hieter. 1990. Methods in yeast genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Rothstein, R. 1991. Targeting, disruption, and replacement and allele rescue: integrative DNA transformation in yeast. Methods Enzymol. 194:281–301.
  • Sherman, F., and H. Roman. 1963. Evidence for two types of allelic recombination in yeast. Genetics 48:255–261.
  • Shuster, E. O., and B. Byers. 1989. Pachytene arrest and other meiotic effects of the start mutations in Saccharomyces. Genetics 123:29–43.
  • Sikorski, R. S., and P. Hieter. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27.
  • Weir-Thompson, E. M., and I. W. Dawes. 1984. Developmental changes in translatable RNA species associated with meiosis and spore formation in Saccharomyces cerevisiae. Mol. Cell. Biol. 4:695–702.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.