3
Views
64
CrossRef citations to date
0
Altmetric
Research Article

DNA in Transcriptionally Silent Chromatin Assumes a Distinct Topology That Is Sensitive to Cell Cycle Progression

&
Pages 7077-7087 | Received 30 Jul 1997, Accepted 19 Sep 1997, Published online: 29 Mar 2023

References

  • Abraham, J., J. Feldman, K. A. Nasmyth, J. N. Strathern, A. J. S. Klar, J. R. Broach, and J. B. Hicks. 1982. Sites required for position-effect regulation of mating type information in yeast. Cold Spring Harbor Symp. Quant. Biol. 47:989–998.
  • Abraham, J., K. A. Nasmayth, J. N. Strathern, A. J. S. Klar, and J. B. Hicks. 1984. Regulation of mating-type information in yeast: negative control requiring sequences both 5′ and 3′ to the regulated region. J. Mol. Biol. 176:307–331.
  • Aparicio, O. M., B. L. Billington, and D. E. Gottschling. 1991. Modifiers of position effect are shared between telomeric and silent mating-type loci in S. cerevisiae. Cell 66:1279–1287.
  • Aparicio, O. M., and D. E. Gottschling. 1994. Overcoming telomeric silencing: a transactivator competes to establish gene expression in a cell cycledependent way. Genes Dev. 8:1133–1146.
  • Bell, S. P., R. Kobayashi, and B. Stillman. 1993. Yeast origin recognition complex functions in transcription silencing and DNA replication. Science 262:1844–1849.
  • Bi, X., and L. F. Liu. 1994. recA-independent and recA-dependent intramolecular plasmid recombination: differential homology requirement and distance effect. J. Mol. Biol. 235:414–423.
  • Boscheron, C., L. Maillet, S. Marcand, M. Trai-Pflugfelder, S. Gasser, and E. Gilson. 1996. Cooperation at a distance between silencers and protosilencers at the yeast HML locus. EMBO J. 15:2184–2195.
  • Brand, A., L. Breeden, J. Abraham, R. Sternglanz, and K. A. Nasmyth. 1985. Characterization of a silencer in yeast: a DNA sequence with properties opposite to those of a transcriptional enhancer. Cell 41:41–48.
  • Braunstein, M., C. D. Allis, B. M. Turner, and J. R. Broach. 1996. Efficient transcriptional silencing in yeast requires a heterochromatin histone acetylation pattern. Mol. Cell. Biol. 16:4349–4356.
  • Braunstein, M., A. B. Rose, S. G. Holmes, C. D. Allis, and J. R. Broach. 1993. Transcriptional silencing in yeast is associated with reduced nucleosome acetylation. Genes Dev. 7:592–604.
  • Broach, J. R., and F. C. Volkert. 1991. Circular DNA plasmids of yeast, p. 297–331. In J. R. Broach, E. W. Jones, and J. R. Pringle (ed.), The molecular and cellular biology of the yeast Saccharomyces, vol. 1. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Bucking-Throm, E., W. Duntze, L. H. Hartwell, and T. R. Manney. 1973. Reversible arrest of haploid cells at the initiation of DNA synthesis by a diffusible sex factor. Exp. Cell. Res. 76:99–110.
  • Chen-Cleland, T. A., M. M. Smith, S. Le, R. Sternglanz, and V. G. Allfrey. 1993. Nucleosome structural changes during derepression of silent matingtype loci in yeast. J. Biol. Chem. 268:1118–1124.
  • Diffley, J. F., and J. H. Cocker. 1992. Protein-DNA interactions at a yeast replication origin. Nature 357:169–172.
  • Dubey, D. D., L. R. Davis, S. A. Greenfeder, L. Y. Ong, J. G. Zhu, J. R. Broach, C. S. Newlon, and J. A. Huberman. 1991. Evidence suggesting that the ARS elements associated with silencers of the yeast mating-type locus HML do not function as chromosomal DNA replication origins. Mol. Cell. Biol. 11:5346–5355.
  • Feldman, J. B., J. B. Hicks, and J. R. Broach. 1984. Identification of the sites required for repression of a silent mating type locus in yeast. J. Mol. Biol. 178:815–834.
  • Ferguson, B. M., and W. L. Fangman. 1992. A position effect on the time of replication origin activation in yeast. Cell 68:333–339.
  • Foss, M., and J. Rine. 1993. Molecular definition of the PAS1-1 mutationwhich affects silencing in Saccharomyces cerevisiae. Genetics 135:931–935.
  • Gartenberg, M. R., and J. C. Wang. 1993. Identification of barriers to rotation of DNA segments in yeast from topology of DNA rings excised by an inducible site-specific recombinase. Proc. Natl. Acad. Sci. USA 90:10514–10518.
  • Gartler, S. M., and A. D. Riggs. 1983. Mammalian X-chromosome inactivation. Annu. Rev. Genet. 17:155–190.
  • Germond, J. E., B. Hirt, P. Oudet, M. Gross-Belard, and P. Chambon. 1975. Folding of the DNA double helix in chromatin-like structures from simian virus 40 DNA. Proc. Natl. Acad. Sci. USA 72:1842–1847.
  • Gottschling, D. E. 1992. Telomere-proximal DNA in Saccharomyces cerevisiae is refractory to methyltransferase activity in vivo. Proc. Natl. Acad. Sci. USA 89:4062–4065.
  • Grant, S. G., and V. M. Chapman. 1988. Mechanisms of X-chromosome regulation. Annu. Rev. Genet. 22:199–233.
  • Guacci, V., E. Hogan, and D. Koshland. 1994. Chromosome condensation and sister chromatid pairing in budding yeast. J. Cell Biol. 125:517–530.
  • Hecht, A., T. Laroche, S. Strahl-Bolsinger, S. M. Gasser, and M. Grunstein. 1995. Histone H3 and H4 N-termini interact with SIR3 and SIR4 proteins: a molecular model for the formation of heterochromatin in yeast. Cell 80:583–592.
  • Hecht, A., T. Laroche, S. Strahl-Bolsinger, and M. Grunstein. 1996. Spreading of transcriptional repression by SIR3 from telomeric heterochromatin. Nature 383:92–96.
  • Hereford, L. M., and L. H. Hartwell. 1974. Sequential gene function in the initiation of Saccharomyces cerevisiae DNA synthesis. J. Mol. Biol. 84:445–461.
  • Herskowitz, I. 1989. A regulatory hierarchy for cell specialization in yeast. Nature 342:749–757.
  • Herskowitz, I., J. Rine, and J. Strathern. 1992. Mating-type determination and mating type interconversion in Saccharomyces cerevisiae, p. 583–656. In E. W. Jones, J. R. Pringle, and J. R. Broach (ed.), The molecular and cellular biology of the yeast Saccharomyces, vol. 2. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Holmes, S., and J. R. Broach. 1996. Silencers are required for inheritance of the repressed state in yeast. Genes Dev. 10:1021–1032.
  • Holmes, S. G., A. B. Rose, K. Steuerle, E. Saez, S. Sayegh, Y. M. Lee, and J. R. Broach. 1997. Hyperactivation of the silencing proteins, Sir2p and Sir3p, causes chromosome loss. Genetics 145:605–614.
  • Jacobs, C. W., A. E. Adams, P. J. Szaniszlo, and J. R. Pringle. 1988. Function of microtubules in the Saccharomyces cerevisiae cell cycle. J. Cell Biol. 107:1409–1426.
  • Johnson, L. M., P. S. Kayne, E. S. Kahn, and M. Grunstein. 1990. Genetic evidence for an interaction between SIR3 and histone H4 in the repression of the silent mating loci in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 87:6286–6290.
  • Kaiser, C., S. Michaelis, and A. Mitchell. 1994. Methods in yeast genetics: a Cold Spring Harbor Laboratory course manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Kayne, P. S., U.-J. Kim, M. Han, J. R. Mullen, F. Yoshizaki, and M. Grunstein. 1988. Extremely conserved histone H4 N terminus is dispensable for growth but essential for repressing the silent mating loci in yeast. Cell 55:27–39.
  • Kimmerly, W., A. Buchman, R. Kornberg, and J. Rine. 1988. Roles of two DNA-binding factors in replication, segregation and transcriptional repression mediated by a yeast silencer. EMBO J. 7:2241–2253.
  • Kurtz, S., and D. Shore. 1991. RAP1 protein activates and silences transcription of mating-type genes in yeast. Genes Dev. 5:616–628.
  • Laurenson, P., and J. Rine. 1992. Silencers, silencing, and heritable transcriptional states. Microbiol. Rev. 56:543–560.
  • Liu, C., X. Mao, and A. J. Lustig. 1994. Mutational analysis defines a C-terminal tail domain of RAP1 essential for telomeric silencing in Saccharomyces cerevisiae. Genetics 138:1025–1040.
  • Loo, S., C. A. Fox, J. Rine, R. Kobayashi, B. Stillman, and S. Bell. 1995. The origin recognition complex in silencing, cell cycle progression, and DNA replication. Mol. Biol. Cell 6:741–756.
  • Loo, S., and J. Rine. 1994. Silencers and domains of generalized repression. Science 264:1768–1771.
  • Lutter, L. C. 1989. Thermal unwinding of simian virus 40 transcription complex DNA. Proc. Natl. Acad. Sci. USA 86:8712–8716.
  • Lynch, A. S., and J. C. Wang. 1994. Use of an inducible site-specific recombinase to probe the structure of protein-DNA complexes involved in F plasmid partition in Escherichia coli. J. Mol. Biol. 236:679–684.
  • Mahoney, D. J., and J. R. Broach. 1989. The HML mating-type cassette of Saccharomyces cerevisiae is regulated by two separate but functionally equivalent silencers. Mol. Cell. Biol. 9:4621–4630.
  • Mahoney, D. J., R. Marquardt, G. J. Shei, A. B. Rose, and J. R. Broach. 1991. Mutations in the HML E silencer of Saccharomyces cerevisiae yield metastable inheritance of transcriptional repression. Genes Dev. 5:605–615.
  • Monk, M. 1988. Genomic imprinting. Genes Dev. 2:921–925.
  • Moretti, P., K. Freeman, L. Coodly, and D. Shore. 1994. Evidence that a complex of SIR proteins interacts with the silencer and telomere-binding protein RAP1. Genes Dev. 8:2257–2269.
  • Nasmyth, K. A. 1982. The regulation of yeast mating-type chromatin structure by SIR: an action at a distance affecting both transcription and transposition. Cell 30:567–578.
  • Nickels, J. T., and J. R. Broach. 1996. A ceramide-activated protein phosphatase mediates ceramide-induced G1 arrest of Saccharomyces cerevisiae. Genes Dev. 10:382–394.
  • Norton, V. G., B. S. Imai, P. Yau, and E. M. Bradbury. 1989. Histone acetylation reduces nucleosome core particle linking number change. Cell 57:449–457.
  • Norton, V. G., K. W. Marvin, P. Yau, and E. M. Bradbury. 1990. Nucleosome linking number change controlled by acetylation of histones H3 and H4. J. Biol. Chem. 265:19848–19852.
  • Osborne, B. I., and L. Guarente. 1988. Transcription by RNA polymerase II induces changes of DNA topology in yeast. Genes Dev. 2:766–772.
  • Park, E.-C., and J. W. Szostak. 1990. Point mutations in the yeast histone H4 gene prevent silencing of the silent mating type locus HML. Mol. Cell. Biol. 10:4932–4934.
  • Pillus, L., and J. Rine. 1989. Epigenetic inheritance of transcription states in S. cerevisiae. Cell 59:637–647.
  • Reik, W. 1989. Genetic imprinting and genetic disorders in man. Trends Genet. 5:331–336.
  • Reynolds, A. E., R. M. McCarroll, C. S. Newlon, and W. L. Fangman. 1989. Time of replication of ARS elements along yeast chromosome III. Mol. Cell. Biol. 9:4488–4494.
  • Shei, G. J., and J. R. Broach. 1995. Yeast silencers can act as orientationdependent gene inactivation centers that respond to environmental signals. Mol. Cell. Biol. 15:3496–3506.
  • Simpson, R. T., F. Thoma, and J. M. Brubaker. 1985. Chromatin reconstituted from tandemly repeated cloned DNA fragments and core histones: a model system for study of higher order structure. Cell 42:799–808.
  • Singh, J., and A. J. S. Klar. 1992. Active genes in budding yeast display enhanced in vivo accessibility to foreign DNA methylases: a novel in vivo probe for chromatin structure of yeast. Genes Dev. 6:186–196.
  • Slater, M. L. 1973. Effect of reversible inhibition of deoxyribonucleic acid synthesis on the yeast cell cycle. J. Bacteriol. 113:263–270.
  • Solter, D. 1988. Differential imprinting and expression of maternal and paternal genomes. Annu. Rev. Genet. 22:127–146.
  • Strahl-Bolsinger, S., A. Hecht, K. Luo, and M. Grunstein. 1997. SIR2 and SIR4 interactions differ in core and extended telomeric heterochromatin in yeast. Genes Dev. 11:83–93.
  • Terleth, C., C. A. van Sluis, and P. van de Putte. 1989. Differential repair of UV damage in Saccharomyces cerevisiae. Nucleic Acids Res. 17:4433–4439.
  • Thompson, J. S., L. M. Johnson, and M. Grunstein. 1994. Specific repression of the yeast silent mating locus HMR by an adjacent telomere. Mol. Cell. Biol. 14:446–455.
  • Thompson, J. S., X. Ling, and M. Grunstein. 1994. Histone H3 amino terminus is required for telomeric and silent mating locus repression in yeast. Nature 369:245–247.
  • Triolo, T., and R. Sternglanz. 1996. Role of interactions between the origin recognition complex and SIR1 in transcriptional silencing. Nature 381:251–253.
  • Volkert, F. C., and J. R. Broach. 1986. Site-specific recombination promotes plasmid amplification in yeast. Cell 46:541–550.
  • Wang, J. C. 1985. DNA topoisomerases. Annu. Rev. Biochem. 54:665–697.
  • Wang, J. C. 1994. An introduction to DNA supercoiling and DNA topoisomerase-catalyzed linking number changes of supercoiled DNA. Adv. Pharmacol. 29B:257–270.
  • Wilson, C., H. J. Bellen, and W. J. Gehring. 1990. Position effects on eukaryotic gene expression. Annu. Rev. Cell Biol. 6:679–714.
  • Wu, H. Y., S. Shyy, J. C. Wang, and L. F. Liu. 1988. Transcription generates positively and negatively supercoiled domains in the template. Cell 53:433–440.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.