7
Views
107
CrossRef citations to date
0
Altmetric
Research Article

Novel Receptor Interaction and Repression Domains in the Orphan Receptor SHP

, &
Pages 7126-7131 | Received 22 Jul 1997, Accepted 11 Sep 1997, Published online: 29 Mar 2023

References

  • Ausubel, F. M., R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl (ed.). 1997. Current protocols in molecular biology. Greene Publishing Assoc., New York, N.Y.
  • Baes, M., T. Gulick, H.-S. Choi, M. G. Martinoli, D. Simha, and D. D. Moore. 1994. A new orphan member of the nuclear hormone receptor superfamily that interacts with a subset of retinoic acid response elements. Mol. Cell. Biol. 14:1544–1552.
  • Beato, M., P. Herrlich, and G. Schutz. 1995. Steroid hormone receptors: many actors in search of a plot. Cell 83:851–857.
  • Bourget, W., M. Ruff, P. Chambon, H. Gronemeyer, and D. Moras. 1995. Crystal structure of the ligand binding domain of the human nuclear receptor RXRalpha. Nature 375:377–382.
  • Casanova, J., E. Helmer, S. Selmi-Ruby, J.-S. Qi, M. Au-Fliegner, V. Desai-Yajnik, N. Koudinova, F. Yarm, B. M. Raaka, and H. H. Samuels. 1994. Functional evidence for ligand-dependent dissociation of thyroid hormone and retinoic acid receptors from an inhibitory cellular factor. Mol. Cell. Biol. 14:5756–5765.
  • Chen, F., A. J. Cooney, Y. Wang, S. W. Law, and B. W. O’Malley. 1994. Cloning of a novel orphan receptor (GCNF) expressed during germ cell development. Mol. Endocrinol. 8:1434–1444.
  • Chen, J. D., and R. M. Evans. 1995. A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature 377:454–457.
  • Downes, M., L. J. Burke, P. J. Bailey, and G. E. Muscat. 1996. Two receptor interaction domains in the corepressor, N-CoR/RIP13, are required for an efficient interaction with Rev-erbA alpha and RVR: physical association is dependent on the E region of the orphan receptors. Nucleic Acids Res. 24:4379–4386.
  • Downes, M., L. J. Burke, and G. E. Muscat. 1996. Transcriptional repression by Rev-erbA alpha is dependent on the signature motif and helix 5 in the ligand binding domain: silencing does not involve an interaction with N- CoR. Nucleic Acids Res. 24:3490–3498.
  • Fawell, S. E., J. A. Lees, R. White, and M. G. Parker. 1990. Characterization and colocalization of steroid binding and dimerization activities in the mouse estrogen receptor. Cell 60:953–962.
  • Fields, S., and O. Song. 1989. A novel genetic system to detect proteinprotein interaction. Nature 340:245–246.
  • Fondell, J. D., F. Brunel, K. Hisatake, and R. G. Roeder. 1996. Unliganded thyroid hormone receptor α can target TATA-binding protein for transcriptional repression. Mol. Cell. Biol. 16:281–287.
  • Forman, B. M., and H. H. Samuels. 1990. Minireview: interactions among a subfamily of nuclear hormone receptors: the regulatory zipper hypothesis. Mol. Endocrinol. 4:1293–1302.
  • Forman, B. M., C.-R. Yang, M. Au, J. Casanova, J. Ghysdael, and H. H. Samuels. 1987. A domain containing a leucine zipper like motif mediates novel in vivo interactions between the thyroid hormone and retinoic acid receptors. Mol. Endocrinol. 3:1610–1626.
  • Giguere, V., M. Tini, G. Flock, E. Ong, R. M. Evans, and G. Otulakowski. 1994. Isoform-specific amino-terminal domains dictate DNA-binding properties of RORα, a novel family of orphan hormone nuclear receptors. Genes Dev. 8:538–553.
  • Gyuris, J., E. Golemis, H. Chertkov, and R. Brent. 1993. Cdi1, a human G1 and S phase protein phosphatase that associates with Cdk2. Cell 75:791–803.
  • Horlein, A. J., A. M. Naar, T. Heinzel, J. Torchia, B. Gloss, R. Kurokawa, A. Ryan, Y. Kamei, M. Soderstrom, C. K. Glass, and M. G. Rosenfeld. 1995. Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature 377:397–404.
  • Inostroza, J. A., F. H. Mermelstein, I. Ha, W. S. Lane, and D. Reinberg. 1992. Dr1, a TATA-binding protein-associated phosphoprotein and inhibitor of class II gene transcription. Cell 70:477–489.
  • Ito, M., R. Yu, and J. L. Jameson. 1997. DAX-1 inhibits SF-1-mediated transactivation via a carboxy-terminal domain that is deleted in adrenal hypoplasia congenita. Mol. Cell. Biol. 17:1476–1483.
  • Kastner, P., M. Mark, and P. Chambon. 1995. Nonsteroid nuclear receptors: what are genetic studies telling us about their role in real life. Cell 83:859–869.
  • Leblanc, B. P., and H. G. Stunnenberg. 1995. 9-cis Retinoic acid signaling: changing partners causes some excitement. Genes Dev. 9:1811–1816.
  • Lee, J. W., H.-S. Choi, J. Gyuris, R. Brent, and D. D. Moore. 1995. Two classes of proteins dependent on either the presence or absence of thyroid hormone for interaction with the thyroid hormone receptor. Mol. Endocrinol. 9:243–254.
  • Lees, J. A., S. E. Fawell, R. White, and M. G. Parker. 1990. A 22-amino-acid peptide restores DNA-binding activity to dimerization-defective mutants of the estrogen receptor. Mol. Cell. Biol. 10:5529–5531.
  • Mangelsdorf, D. J., and R. M. Evans. 1995. The RXR heterodimers and orphan receptors. Cell 83:841–850.
  • Mangelsdorf, D. J., C. Thummel, M. Beato, P. Herrlich, G. Schutz, K. Umesono, B. Blumberg, P. Kastner, M. Mark, P. Chambon, and R. M. Evans. 1995. The nuclear receptor superfamily: the second decade. Cell 83:835–839.
  • Mermelstein, F., K. Yeung, J. Cao, J. A. Inostroza, H. Erdjument-Bromage, K. Eagelson, D. Landsman, P. Levitt, P. Tempst, and D. Reinberg. 1996. Requirement of a corepressor for Dr1-mediated repression of transcription. Genes Dev. 10:1033–1048.
  • Pazin, M. J., and J. T. Kadonaga. 1997. What’s up and down with histone deacetylation and transcription? Cell 89:325–328.
  • Perlmann, T., K. Umesono, P. N. Rangarajan, B. M. Forman, and R. M. Evans. 1996. Two distinct dimerization interfaces differentially modulate target gene specificity of nuclear hormone receptors. Mol. Endocrinol. 10:958–966.
  • Qi, J.-S., V. Desai-Yajnik, M. E. Greene, B. M. Raaka, and H. H. Samuels. 1995. The ligand-binding domains of the thyroid hormone/retinoid receptor gene subfamily function in vivo to mediate heterodimerization, gene silencing, and transactivation. Mol. Cell. Biol. 15:1817–1825.
  • Sande, S., and M. L. Privalsky. 1996. Identification of TRACs (T3 receptorassociating cofactors), a family of cofactors that associate with, and modulate the activity of, nuclear hormone receptors. Mol. Endocrinol. 10:813–825.
  • Selden, R. F., K. B. Howie, M. E. Rowe, H. M. Goodman, and D. D. Moore. 1986. Human growth hormone as a reporter gene in regulation studies employing transient gene expression. Mol. Cell. Biol. 6:3173–3179.
  • Seol, W., H.-S. Choi, and D. D. Moore. 1995. Isolation of proteins that interact specifically with the retinoid X receptor: two novel orphan receptors. Mol. Endocrinol. 9:72–85.
  • Seol, W., H. S. Choi, and D. D. Moore. 1996. An orphan nuclear hormone receptor that lacks a DNA binding domain and heterodimerizes with other receptors. Science 272:1336–1339.
  • Seol, W., M. J. Mahon, Y. K. Lee, and D. D. Moore. 1996. Two receptor interacting domains in the nuclear hormone receptor corepressor RIP13/N- CoR. Mol. Endocrinol. 10:1646–1655.
  • Shibata, H., Z. Nawaz, S. Y. Tsai, B. W. O’Malley, and M. J. Tsai. 1997. Gene silencing by chicken ovalbumin upstream promoter-transcription factor I (COUP-TFI) is mediated by transcriptional corepressors, nuclear receptor-corepressor (N-CoR) and silencing mediator for retinoic acid receptor and thyroid hormone receptor (SMRT). Mol. Endocrinol. 11:714–724.
  • Taunton, J., C. A. Hassig, and S. L. Schreiber. 1996. A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science 272:408–411.
  • Tong, G. X., M. R. Tanen, and M. K. Bagchi. 1995. Ligand modulates the interaction of thyroid hormone receptor beta with the basal transcription machinery. J. Biol. Chem. 270:10601–10611.
  • Vidal, M., and R. F. Gaber. 1991. RPD3 encodes a second factor required to achieve maximum positive and negative transcriptional states in Saccharomyces cerevisiae. Mol. Cell. Biol. 11:6317–6327.
  • Wade, P. A., and A. P. Wolffe. 1997. Histone acetyltransferases in control. Curr. Biol. 7:R82–R84.
  • Wolffe, A. P. 1997. Transcriptional control. Sinful repression. Nature 387:16–17.
  • Wurtz, J. M., W. Bourguet, J. P. Renaud, V. Vivat, P. Chambon, D. Moras, and H. Gronemeyer. 1996. A canonical structure for the ligand-binding domain of nuclear receptors. Nat. Struct. Biol. 3:87–94.
  • Zamir, I., J. Zhang, and M. A. Lazar. 1997. Stoichiometric and steric principles governing repression by nuclear hormone receptors. Genes Dev. 11:835–846.
  • Zanaria, E., F. Muscatelli, B. Bardoni, T. M. Strom, S. Guioli, W. Guo, E. Lalli, C. Moser, A. P. Walker, E. R. B. McCabe, T. Meitinger, A. P. Monaco, P. Sassone-Corsi, and G. Camerino. 1994. An unusual member of the nuclear hormone receptor superfamily responsible for X-linked adrenal hypoplasia congenita. Nature 372:635–641.
  • Zervos, A. S., J. Gyuris, and R. Brent. 1993. Mxi1, a protein that specifically interacts with Max to bind Myc-Max recognition sites. Cell 72:223–232.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.