7
Views
14
CrossRef citations to date
0
Altmetric
Research Article

The Amino Terminus of the F1-ATPase β-Subunit Precursor Functions as an Intramolecular Chaperone To Facilitate Mitochondrial Protein Import

, , &
Pages 7169-7177 | Received 28 May 1997, Accepted 18 Sep 1997, Published online: 29 Mar 2023

References

  • Bauer, M. F., C. Sirrenberg, W. Neupert, and M. Brunner. 1996. Role of Tim23 as voltage sensor and presequence receptor in protein import into mitochondria. Cell 87:33–41.
  • Bedwell, D. M., D. J. Klionsky, and S. D. Emr. 1987. The yeast F1-ATPase β subunit precursor contains functionally redundant mitochondrial protein import information. Mol. Cell. Biol. 7:4038–4047.
  • Bedwell, D. M., S. Strobel, K. Yun, G. Jongeward, and S. Emr. 1989. Sequence and structural requirements of a mitochondrial protein import signal defined by saturation cassette mutagenesis. Mol. Cell. Biol. 9:1014–1025.
  • Bolliger, L., T. Junne, G. Schatz, and T. Lithgow. 1995. Acidic receptor domains on both sides of the outer membrane mediate translocation of precursor proteins into yeast mitochondria. EMBO J. 14:6318–6326.
  • Caplan, A. J., D. M. Cyr, and M. G. Douglas. 1992. YDJ1p facilitates polypeptide translocation across different intracellular membranes by a conserved mechanism. Cell 71:1143–1155.
  • Cover, W. H., J. P. Ryan, P. J. Bassford, K. A. Walsh, J. Bollinger, and L. L. Randall. 1987. Suppression of a signal sequence mutation by an amino acid substitution in the mature portion of the maltose-binding protein. J. Bacteriol. 169:1794–1800.
  • Eilers, M., S. Hwang, and G. Schatz. 1988. Unfolding and refolding of a purified precursor protein during import into isolated mitochondria. EMBO J. 7:1139–1145.
  • Eilers, M., and G. Schatz. 1986. Binding of a specific ligand inhibits import of a purified precursor protein into mitochondria. Nature 322:228–232.
  • Emr, S. D., A. Vassarotti, J. Garrett, B. L. Geller, M. Takeda, and M. G. Douglas. 1986. The amino terminus of the yeast F1-ATPase β-subunit precursor functions as a mitochondrial import signal. J. Cell Biol. 102:523–533.
  • Endo, T., M. Eilers, and G. Schatz. 1989. Binding of a tightly folded artificial mitochondrial precursor protein to the mitochondrial outer membrane involves a lipid-mediated conformational change. J. Biol. Chem. 264:2951–2956.
  • Endo, T., S. Mitsui, and D. Roise. 1995. Mitochondrial presequences can induce aggregation of unfolded proteins. FEBS Lett. 359:93–96.
  • Geitz, R. D., and A. Sugino. 1988. New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 74:527–534.
  • Glaser, S. M., and M. G. Cumsky. 1990. Localization of a synthetic presequence that blocks protein import into mitochondria. J. Biol. Chem. 265:8817–8822.
  • Glick, B. S. 1995. Can Hsp70 proteins act as force-generating motors? Cell 80:11–14.
  • Gratzer, S., T. Lithgow, R. E. Bauer, E. Lamping, F. Paltauf, S. D. Kohlwein, V. Haucke, T. Junne, G. Schatz, and M. Hortst. 1995. Mas37p, a novel receptor subunit for protein import into mitochondria. J. Cell Biol. 129:25–34.
  • Hachiya, N., T. Komiya, R. Alam, J. Iwahashi, M. Sakaguchi, T. Omura, and K. Mihara. 1994. MSF, a novel cytoplasmic chaperone which functions in precursor targeting to mitochondria. EMBO J. 13:5146–5154.
  • Hachiya, N., K. Mihara, K. Suda, M. Horst, G. Schatz, and T. Lithgow. 1995. Reconstitution of the initial steps of mitochondrial protein import. Nature 376:705–709.
  • Hajek, P., and D. Bedwell. 1994. Characterization of the mitochondrial binding and import properties of purified yeast F1-ATPase β subunit precursor: import requires external ATP. J. Biol. Chem. 269:7192–7200.
  • Hardy, S. J. S., and L. L. Randall. 1991. A kinetic partitioning model of selective binding of nonnative proteins by the bacterial chaperone SecB. Science 251:439–443.
  • Haucke, V., M. Horst, G. Schatz, and T. Lithgow. 1996. The Mas20p and Mas70p subunits of the protein import receptor of yeast mitochondria interact via the tetratricopeptide repeat motif in Mas20p: evidence for a single hetero-oligomeric receptor. EMBO J. 15:1231–1237.
  • Haucke, V., T. Lithgow, S. Rospert, K. Hahne, and G. Schatz. 1995. The yeast mitochondrial protein import receptor Mas20p binds precursor proteins through electrostatic interaction with the positively charged presequence. J. Biol. Chem. 270:5565–5570.
  • Honlinger, A., M. Kubrich, M. Moczko, F. Gartner, L. Mallet, F. Bussereau, C. Eckerskorn, F. Lottspeich, K. Dietmeier, M. Jacquet, and N. Pfanner. 1995. The mitochondrial receptor complex: Mom22 is essential for cell viability and directly interacts with preproteins. Mol. Cell. Biol. 15:3382–3389.
  • Horwich, A. L., F. Kalousek, W. A. Fenton, R. A. Pollock, and L. E. Rosenberg. 1986. Targeting of pre-ornithine transcarbamylase to mitochondria: definition of critical regions and residues in the leader peptide. Cell 44:451–459.
  • Hurt, E. C., D. S. Allison, U. Muller, and G. Schatz. 1987. Amino-terminal deletions in the presequence of an imported mitochondrial protein block the targeting function and proteolytic cleavage of the presequence at the carboxy terminus. J. Biol. Chem. 262:1420–1424.
  • Hurt, E. C., B. Pesold-Hurt, K. Suda, W. Oppliger, and G. Schatz. 1985. The first twelve amino acids (less than half of the pre-sequence) of an imported mitochondrial protein can direct mouse cytosolic dihydrofolate reductase into the yeast mitochondrial matrix. EMBO J. 4:2061–2068.
  • Keng, T., E. Alani, and L. Guarente. 1986. The nine amino-terminal residues of δ-aminolevulinate synthase direct β-galactosidase into the mitochondrial matrix. Mol. Cell. Biol. 6:355–364.
  • Khisty, V. J., and L. L. Randall. 1995. Demonstration in vivo that interaction of maltose-binding protein with SecB is determined by a kinetic partitioning. J. Bacteriol. 177:3277–3282.
  • Kudlicki, W., O. O. W. Odom, G. Kramer, B. Hardesty, G. A. Merrill, and P. M. Horowitz. 1995. The importance of the N-terminal segment for DnaJ- mediated folding of rhodanese while bound to ribosomes as peptidyl- tRNA. J. Biol. Chem. 270:10650–10657.
  • Lithgow, T., B. S. Glick, and G. Schatz. 1995. The protein import receptor of mitochondria. Trends Biochem. Sci. 20:98–101.
  • Martin, J., K. Mahlke, and N. Pfanner. 1991. Role of an energized inner membrane in mitochondrial protein import: ΔΨ drives the movement of presequences. J. Biol. Chem. 266:18051–18057.
  • Mattingly, J. R., A. Iriarte, and M. Martinez-Carrion. 1993. Structural features which control folding of homologous proteins in cell-free translation systems. J. Biol. Chem. 268:26320–26327.
  • Murakami, H., D. Pain, and G. Blobel. 1988. 70-kD heat shock-related protein is one of at least two distinct cytosolic factors stimulating protein import into mitochondria. J. Cell Biol. 107:2051–2057.
  • Murakami, K., and M. Mori. 1990. Purified presequence binding factor (PBF) forms an import-competent complex with a purified mitochondrial precursor protein. EMBO J. 9:3201–3208.
  • Ohta, S., and G. Schatz. 1984. A purified precursor polypeptide requires a cytosolic protein fraction for import into mitochondria. EMBO J. 3:651–657.
  • Prevelige, P. E., Jr., and G. D. Fasman. 1989. Chou-Fasman prediction of the secondary structure of proteins. The Chou-Fasman-Prevelige algorithm, p. 391–416. In G. D. Fasman (ed.), Prediction of protein structure and the principles of protein conformation. Plenum Publishing, New York, N.Y.
  • Reid, G. A., and G. Schatz. 1982. Import of proteins into mitochondria: extramitochondrial pools and post-translational import of mitochondrial protein precursors in vivo. J. Biol. Chem. 257:13062–13067.
  • Roise, D. 1992. Interaction of a synthetic mitochondrial presequence with isolated yeast mitochondria: mechanism of binding and kinetics of import. Proc. Natl. Acad. Sci. USA 89:608–612.
  • Roise, D., S. J. Horvath, J. M. Tomich, J. H. Richards, and G. Schatz. 1986. A chemically synthesized pre-sequence of an imported mitochondrial protein can form an amphiphilic helix and perturb natural and artificial phospholipid bilayers. EMBO J. 5:1327–1334.
  • Roise, D., F. Theiler, S. J. Horvath, J. M. Tomich, J. H. Richards, D. S. Allison, and G. Schatz. 1988. Amphiphilicity is essential for mitochondrial presequence function. EMBO J. 7:649–653.
  • Rose, M. D., F. Winston, and P. Hieter. 1990. Methods in yeast genetics: a laboratory course manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Sanger, F., S. Nicklen, and A. R. Coulson. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74:5463–5467.
  • Stueber, D., I. Ibrahimi, D. Cutler, B. Dobberstein, and H. Bujard. 1984. A novel in vitro transcription-translation system: accurate and efficient synthesis of single proteins from cloned DNA sequences. EMBO J. 3:3143–3148.
  • Ungermann, C., B. Guiard, W. Neupert, and D. M. Cyr. 1996. The DC- and Hsp70/MIM44-dependent reaction cycle driving early steps of protein import into mitochondria. EMBO J. 15:735–744.
  • Ungermann, C., W. Neupert, and D. M. Cyr. 1994. The role of Hsp70 in conferring unidirectionality on protein translocation into mitochondria. Science 266:1250–1253.
  • Vassarotti, A., W.-J. Chen, C. Smagula, and M. G. Douglas. 1987. Sequences distal to the mitochondrial targeting sequences are necessary for the maturation of the F1-ATPase b-subunit precursor in mitochondria. J. Biol. Chem. 262:411–418.
  • Verner, K., and G. Schatz. 1987. Import of an incompletely folded precursor protein into isolated mitochondria requires an energized inner membrane, but no added ATP. EMBO J. 6:2449–2456.
  • Vestweber, D., and G. Schatz. 1988. Point mutations destabilizing a precursor protein enhance its post-translational import into mitochondria. EMBO J. 7:1147–1151.
  • von Heijne, G. 1986. Mitochondrial targeting sequences may form amphiphilic helices. EMBO J. 5:1335–1342.
  • Weiss, J. B., and P. J. Bassford. 1990. The folding properties of the Escherichia coli maltose-binding protein influence its interaction with SecB in vitro. J. Bacteriol. 172:3023–3029.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.