17
Views
123
CrossRef citations to date
0
Altmetric
Research Article

p53 Is Phosphorylated by CDK7-Cyclin H in a p36MAT1-Dependent Manner

, , , , , , & show all
Pages 7220-7229 | Received 16 Jul 1997, Accepted 17 Sep 1997, Published online: 29 Mar 2023

References

  • Adamczewski, J. P., M. Rossignol, J.-P. Tassan, E. A. Nigg, V. Moncollin, and J. M. Egly. 1996. MAT1, cdk7 and cyclin H form a kinase complex which is UV light-sensitive upon association with TFIIH. EMBO J. 15:1877–1884.
  • Bargonetti, J., I. Reynisdottir, P. N. Friedman, and C. Prives. 1992. Sitespecific binding of wild-type p53 to cellular DNA is inhibited by SV40 T antigen and mutant p53. Genes Dev. 6:1886–1898.
  • Bischoff, J. R., P. N. Friedman, D. R. Marshak, C. Prives, and D. Beach. 1990. Human p53 is phosphorylated by p60-cdc2 and cyclin B-cdc2. Proc. Natl. Acad. Sci. USA 87:4766–4770.
  • Boyle, W. J., P. van der Geer, and T. Hunter. 1991. Phosphopeptide mapping and phosphoamino acid analysis by two-dimensional separation on thin-layer cellulose plates. Methods Enzymol. 201:110–149.
  • Brown, A. J., T. Jones, and J. Shuttleworth. 1994. Expression and activity of p40MO15, the catalytic subunit of cdk-activating kinase, during Xenopus oogenesis and embryogenesis. Mol. Biol. Cell 5:921–932.
  • Casnellie, J. E. 1991. Assay of protein kinases using peptides with basic residues for phosphocellulose binding. Methods Enzymol. 200:115–127.
  • Cho, Y., S. Gorina, P. D. Jeffrey, and N. P. Pavletich. 1994. Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science 265:346–355.
  • Connell-Crowley, L., M. J. Solomon, N. Wei, and J. W. Harper. 1993. Phosphorylation independent activation of human cyclin-dependent kinase 2 by cyclin A in vitro. Mol. Biol. Cell 4:79–92.
  • Devault, A., A.-M. Martinez, D. Fesquet, J.-C. Labbé, N. Morin, J.-P. Tassan, E. A. Nigg, J.-C. Cavadore, and M. Doree. 1995. MAT1 (‘menage a trois’) a new RING finger protein subunit stabilizing cyclin H-cdk7 complexes in starfish and Xenopus CAK. EMBO J. 14:5027–5036.
  • Drapkin, R., J. T. Reardon, A. Ansari, J. C. Huang, L. Zawel, K. Ahn, A. Sancar, and D. Reinberg. 1994. Dual role of TFIIH in DNA repair and in transcription by RNA polymerase II. Nature 368:769–772.
  • Dutta, A., J. M. Ruppert, J. C. Aster, and E. Winchester. 1993. Inhibition of DNA replication factor RPA by p53. Nature 365:79–82.
  • el-Deiry, W. S., T. Tokino, V. E. Velculescu, D. B. Levy, R. Parsons, J. M. Trent, D. Lin, W. E. Mercer, K. W. Kinzler, and B. Vogelstein. 1993. WAF1, a potential mediator of p53 tumor suppression. Cell 75:817–825.
  • Farmer, G., J. Colgan, Y. Nakatani, J. L. Manley, and C. Prives. 1996. Functional interaction between p53, the TATA-binding protein (TBP), and TBP-associated factors in vivo. Mol. Biol. Cell 16:4295–4304.
  • Feaver, W. J., J. Q. Svejstrup, N. L. Henry, and R. D. Kornberg. 1994. Relationship of CDK-activating kinase and RNA polymerase II CTD kinase TFIIH/TFIIK. Cell 79:1103–1109.
  • Fesquet, D. 1993. The MO15 gene encodes the catalytic subunit of a protein kinase that activates cdc2 and other cyclin-dependent kinases (CDKs) through phosphorylation of Thr161 and its homologues. EMBO J. 12:3111–3121.
  • Fiscella, M., S. J. Ullrich, N. Zambriano, W. T. Shields, D. Liu, S. P. Lees-Miller, C. W. Anderson, W. E. Mercer, and E. Appella. 1993. Mutation of the serine 15 phosphorylation site of human p53 reduces the ability of p53 to inhibit cell cycle progression. Oncogene 8:1519–1528.
  • Fisher, R. P., P. Jin, H. M. Chamberlin, and D. O. Morgan. 1995. Alternative mechanisms of CAK assembly require an assembly factor or an activating kinase. Cell 83:47–57.
  • Ford, J. M., and P. C. Hanawalt. 1995. Li-Fraumeni syndrome fibroblasts homozygous for p53 mutations are deficient in global DNA repair but exhibit normal transcription-coupled repair and enhanced UV resistance. Proc. Natl. Acad. Sci. USA 92:8876–8880.
  • Friedlander, P., Y. Legros, T. Soussi, and C. Prives. 1996. Regulation of mutant p53 temperature-sensitive DNA binding. J. Biol. Chem. 271:25468–25478.
  • Gottlieb, T., and M. Oren. 1996. p53 in growth control and neoplasia. Biochim. Biophys. Acta 1287:77–102.
  • Havre, P. A., J. Yuan, L. Hedrick, K. R. Cho, and P. M. Glazer. 1995. p53 inactivation by HPV16 results in increased mutagenesis in human cells. Cancer Res. 55:4420–4424.
  • He, Z., B. T. Brinton, J. Greenblatt, J. A. Hassell, and C. J. Ingels. 1993. The transactivator proteins VP16 and GAL4 bind replication factor A. Cell 73:1223–1232.
  • Hupp, T. R., and D. P. Lane. 1994. Allosteric activation of latent p53 tetramers. Curr. Biol. 4:865–875.
  • Hupp, T. R., D. W. Meek, C. A. Midgley, and D. P. Lane. 1992. Regulation of the specific DNA binding function of p53. Cell 71:875–886.
  • Ishizaki, K., Y. Ejima, T. Matsunaga, R. Hara, A. Sakamoto, M. Ikenaga, Y. Ikawa, and S. I. Aizawa. 1994. Increased UV-induced SCEs but normal repair of DNA damage in p53-deficient mouse cells. Int. J. Cancer 57:254–257.
  • Jayaraman, L., E. Freulich, and C. Prives. Functional dissection of the p53 tumor suppressor protein. Methods Enzymol., in press.
  • Jayaraman, L., K. G. K. Murthy, C. Zhu, T. Curran, S. Xanthoudakis, and C. Prives. 1997. Identification of redox/repair protein Ref-1 as a potent activator of p53. Genes Dev. 11:558–570.
  • Jayaraman, L., and C. Prives. 1995. Activation of p53 sequence-specific DNA binding by short single strands of DNA requires the p53 C-terminus. Cell 81:1021–1029.
  • Kitagawa, M., H. Higashi, H.-K. Jung, I. Suzuki-Takahashi, M. Ikeda, K. Tamai, J.-Y. Kato, K. Segawa, E. Yoshida, S. Nishimura, and Y. Taya. 1996. The consensus motif for phosphorylation by cyclin D1-Cdk4 is different from that for phosphorylation by cyclin A/E-Cdk2. EMBO J. 15:7060–7069.
  • Ko, L. J., and C. Prives. 1996. p53: puzzle and paradigm. Genes Dev. 10:1054–1072.
  • Kussie, P. H., S. Gorina, V. Marechal, B. Elenbaas, J. Moreau, A. J. Levine, and N. P. Pavletich. 1996. Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274:948–953.
  • Lee, S., B. Elenbaas, A. Levine, and J. Griffith. 1995. p53 and its 14 kDa C-terminal domain recognize primary DNA damage in the form of insertion/ deletion mismatches. Cell 81:1013–1020.
  • Lees-Miller, S., K. Sakaguchi, S. Ullrich, E. Appella, and C. W. Anderson. 1992. Human DNA-activated protein kinase phosphorylates serines 15 and 37 in the amino-terminal transactivation domain of human p53. Mol. Cell. Biol. 12:5041–5049.
  • Leveillard, T., L. Andera, N. Bissonnette, L. Schaeffer, L. Bracco, J.-M. Egly, and B. Wasylyk. 1996. Functional interactions between p53 and the TFIIH complex are affected by tumour-associated mutations. EMBO J. 15:1615–1624.
  • Levine, A. J. 1997. p53, the cellular gatekeeper for growth and division. Cell 88:323–331.
  • Li, R., and M. R. Botchan. 1993. The acidic transcriptional activation domains of VP16 and p53 bind the cellular replication protein A and stimulate in vitro BPV-1 DNA replication. Cell 73:1207–1221.
  • Lin, J., J. Chen, B. Elenbaas, and A. J. Levine. 1994. Several hydrophobic amino acids in the p53 amino-terminal domain are required for transcriptional activation, binding to mdm-2 and the adenovirus 5 E1B 55-kD protein. Genes Dev. 8:1235–1246.
  • Lu, H., and A. J. Levine. 1995. Human TAFII31 protein is a transcriptional coactivator of the p53 protein. Proc. Natl. Acad. Sci. USA 92:5154–5158.
  • Mayr, G. A., M. Reed, P. Wang, Y. Wang, J. F. Schwedes, and P. Tegtmeyer. 1995. Serine phosphorylation in the NH2 terminus of p53 facilitates transactivation. Cancer Res. 55:2410–2417.
  • Meek, D. 1994. Post-translational modification of p53. Semin. Cancer Biol. 5:203–210.
  • Meek, D. W., and W. Eckhart. 1988. Phosphorylation of p53 in normal and simian virus 40-transformed NIH 3T3 cells. Mol. Cell. Biol. 8:461–465.
  • Milne, D. M., L. E. Campbell, D. G. Campbell, and D. W. Meek. 1995. p53 is phosphorylated in vitro and in vivo by an ultraviolet radiation-induced protein kinase characteristic of the c-jun kinase, JNK1. J. Biol. Chem. 270:5511–5518.
  • Milne, D. M., R. H. Palmer, D. G. Campbell, and D. W. Meek. 1992. Phosphorylation of the p53 tumor-suppressor protein at three N-terminal sites by a novel casein kinase I-like enzyme. Oncogene 7:1361–1369.
  • Morgan, D. O. 1995. Principles of CDK regulation. Nature 374:131–134.
  • Pavletich, N. P., K. A. Chambers, and C. O. Pabo. 1993. The DNA-binding domain of p53 contains the four conserved regions and the major mutation hot spots. Genes Dev. 7:2556–2564.
  • Poon, R. Y. C., K. Yamashita, J. P. Adamczewski, T. Hunt, and J. Shuttleworth. 1993. The cdc2-related protein p40MO15 is the catalytic subunit of a protein kinase that can activate p33cdk2 and p34cdc2. EMBO J. 12:3123–3132.
  • Poon, R. Y. C., K. Yamashita, M. Howell, M. A. Ershler, A. Belyavsky, and T. Hunt. 1994. Cell cycle regulation of the p34cdc2/p33cdk2 activating kinase p40MO15. J. Cell Sci. 107:2789–2799.
  • Reardon, J. T., H. Ge, E. Gibbs, A. Sancar, J. Hurwitz, and Z.-Q. Pan. 1996. Isolation and characterization of two human transcription factor IIH (TFIIH)-related complexes: ERCC2/CAK and TFIIH*. Proc. Natl. Acad. Sci. USA 93:6482–6487.
  • Reed, M., B. Woelker, P. Wang, Y. Wang, M. E. Anderson, and P. Tegtmeyer. 1995. The C-terminal domain of p53 recognizes DNA damaged by ionizing radiation. Proc. Natl. Acad. Sci. USA 92:9455–9459.
  • Rossignol, M., I. Kolb-Cheynel, and J.-M. Egly. 1997. Substrate specificity of the cdk-activating kinase (CAK) is altered upon association with TFIIH. EMBO J. 16:1628–1637.
  • Roy, R., J. P. Adamczewski, T. Seroz, W. Vermeulen, J.-P. Tassan, L. Schaeffer, E. A. Nigg, J. H. J. Hoeijmakers, and J.-M. Egly. 1994. The MO15 cell cycle kinase is associated with the TFIIH transcription-DNA repair factor. Cell 79:1093–1101.
  • Sands, A. T., M. B. Suraokar, A. Sanchez, J. E. Marth, L. A. Donehower, and A. Bradley. 1995. p53 deficiency does not affect the accumulation of point mutations in a transgene target. Proc. Natl. Acad. Sci. USA 92:8517–8521.
  • Scherr, C. J. 1994. G1 phase progression: cycling on cue. Cell 79:551–555.
  • Serizawa, H., T. P. Makela, J. W. Conaway, R. C. Conaway, R. A. Weinberg, and R. A. Young. 1995. Association of Cdk-activating kinase subunits with transcription factor TFIIH. Nature 374:280–282.
  • Seroz, T., J. R. Hwang, V. Moncollin, and J. M. Egly. 1995. TFIIH: a link between transcription, DNA repair and cell cycle regulation. Curr. Opin. Genet. Dev. 5:217–221.
  • Shiekhattar, R., F. Mermelstein, R. P. Fisher, R. Drapkin, B. Dynlacht, H. C. Wessling, D. O. Morgan, and D. Reinberg. 1995. Cdk-activating kinase complex is a component of human transcription factor TFIIH. Nature 374:283–287.
  • Shuttleworth, J., R. Godfrey, and A. Colman. 1990. p40MO15, a cdc2-related protein kinase involved in negative regulation of meiotic maturation of Xenopus laevis oocytes. EMBO J. 9:3233–3240.
  • Smith, M. L., I.-T. Chen, Q. Zhan, P. M. O’Connor, and A. J. Fornace, Jr. 1995. Involvement of the p53 tumor suppressor in repair of u.v.-type DNA damage. Oncogene 10:1053–1059.
  • Solomon, M. J., W. J. Harper, and J. Shuttleworth. 1993. CAK, the p34cdc2 activating kinase, contains a protein identical to or closely related to p40MO15. EMBO J. 12:3133–3142.
  • Takenaka, I., F. Morin, B. R. Seizinger, and N. Kley. 1995. Regulation of the sequence-specific DNA binding function of p53 by protein kinase C and protein phosphatases. J. Biol. Chem. 270:5405–5411.
  • Tassan, J.-P., M. Jaquenoud, A. M. Fry, S. Frutiger, G. J. Hughes, and E. A. Nigg. 1995. In vitro assembly of a functional human CDK7-cyclin H complex requires MAT1, a novel 36 kDa RING finger protein. EMBO J. 14:5608–5617.
  • Tassan, J. P., S. J. Schultz, J. Bartek, and E. A. Nigg. 1994. Cell cycle analysis of the activity, subcellular localization, and subunit composition of human CAK (CDK-activating kinase). J. Cell Biol. 127:467–478.
  • Thut, C., J. L. Chen, R. Klemm, and R. Tjian. 1995. p53 transcriptional activation mediated by coactivators TAFII40 and TAFII60. Science 267:100–104.
  • Unger, T. Personal communication.
  • Wang, X. W., K. Forrester, H. Yeh, M. A. Feitelson, J.-R. Gu, and C. C. Harris. 1994. Hepatitis B virus X protein inhibits p53 sequence-specific DNA binding, transcriptional activity, and association with transcription factor ERCC3. Proc. Natl. Acad. Sci. USA 91:2230–2234.
  • Wang, X. W., H. Yeh, L. Schaeffer, R. Roy, V. Moncollin, J.-M. Egly, Z. Wang, E. C. Friedberg, M. K. Evans, B. G. Taffe, V. A. Bohr, G. Weeda, J. H. J. Hoeijmakers, K. Forrester, and C. C. Harris. 1995. p53 modulation of TFIIH-associated nucleotide excision repair activity. Nature Genet. 10:188–193.
  • Wang, Y., and C. Prives. 1995. Increased and altered DNA binding of human p53 by S and G2/M but not G1 cyclin-dependent kinases. Nature 376:88–91.
  • Wang, Z., J. Q. Svejstrup, W. J. Feaver, X. Wu, R. D. Kornberg, and E. C. Friedberg. 1994. Transcription factor b (TFIIH) is required during nucleotide excision repair in yeast. Nature 368:74–76.
  • Xiao, H., A. Pearson, B. Coulombe, R. Truant, S. Zhang, J. L. Regier, S. J. Triezenberg, D. Reinberg, O. Flores, C. J. Ingles, and J. Greenblatt. 1994. Binding of basal transcription factor TFIIH to the acidic activation domains of VP16 and p53. Mol. Cell. Biol. 14:7013–7024.
  • Yankulov, K. Y., and D. L. Bentley. 1997. Regulation of CDK7 substrate specificity by MAT1 and TFIIH. EMBO J. 16:1638–1646.
  • Yee, A., M. A. Nichols, L. Wu, F. L. Hall, R. Kobayashi, and Y. Xiong. 1995. Molecular cloning of CDK7-associated human MAT1, a cyclin-dependent kinase-activating kinase (CAK) assembly factor. Cancer Res. 55:6058–6062.
  • Zhang, W., C. McClain, J.-P. Gau, X.-Y. Guo, and A. B. Deisseroth. 1994. Hyperphosphorylation of p53 induced by okadaic acid attenuates its transcriptional activation function. Cancer Res. 54:4448–4453.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.