9
Views
67
CrossRef citations to date
0
Altmetric
Research Article

Transformed Cells Require Continuous Activity Of RNA Polymerase II To Resist Oncogene-Induced Apoptosis

&
Pages 7306-7316 | Received 12 May 1997, Accepted 26 Aug 1997, Published online: 29 Mar 2023

References

  • Bartolomei, M. S., and J. L. Corden. 1987. Localization of an α-amanitin resistance mutation in the gene encoding the largest subunit of mouse RNA polymerase II. Mol. Cell. Biol. 7:586–594.
  • Bates, S., S. Rowan, and K. H. Vousden. 1996. Characterisation of human cyclin G1 and G2: DNA damage inducible genes. Oncogene 13:1103–1109.
  • Bates, S., and K. H. Vousden. 1996. p53 in signaling checkpoint arrest or apoptosis. Curr. Opin. Genet. Dev. 6:12–18.
  • Beg, A. A., and D. Baltimore. 1996. An essential role for NF-κB in preventing TNF-alpha-induced cell death. Science 274:782–784.
  • Borner, M. M., C. E. Myers, O. Sartor, Y. Sei, T. Toko, J. B. Trepel, and E. Schneider. 1995. Drug-induced apoptosis is not necessarily dependent on macromolecular synthesis or proliferation in the p53-negative human prostate cancer cell line PC-3. Cancer Res. 55:2122–2128.
  • Caelles, C., A. Helmberg, and M. Karin. 1994. p53-dependent apoptosis in the absence of transcriptional activation of p53-target genes. Nature 370:220–223.
  • Canman, C. E., and M. B. Kastan. 1995. Induction of apoptosis by tumor suppressor genes and oncogenes. Semin. Cancer Biol. 6:17–25.
  • Cochet-Meilhac, M., and P. Chambon. 1974. Animal DNA-dependent RNA polymerases. Biochim. Biophys. Acta 353:160–184.
  • Cotter, T. G., J. M. Glynn, F. Echeverri, and D. R. Green. 1992. The induction of apoptosis by chemotherapeutic agents occurs in all phases of the cell cycle. Anticancer Res. 12:773–779.
  • Debbas, M., and E. White. 1993. Wild-type p53 mediates apoptosis by E1A which is inhibited by E1B. Genes Dev. 7:546–554.
  • De Mercoyrol, L., C. Job, and D. Job. 1989. Studies on the inhibition by alpha-amanitin of single-step addition reactions and productive RNA synthesis catalysed by wheat-germ RNA polymerase II. Biochem. J. 258:165–169.
  • Desnoyers, S., S. H. Kaufman, and G. G. Poirier. 1996. Alteration of the nucleolar localization of poly(ADP-ribose) polymerase upon treatment with transcription inhibitors. Exp. Cell Res. 227:146–153.
  • Dubois, M.-F., V. T. Nguyen, S. Bellier, and O. Bensaude. 1994. Inhibitors of transcription such as 5,6-dichloro-1-β-D-ribofuranosylbenzimidazole and isoquinoline sulfonamide derivatives (H-8 and H-7) promote dephosphorylation of the carboxy-terminal domain of RNA polymerase II largest subunit. J. Biol. Chem. 269:13331–13336.
  • El-Deiry, W. S., T. Tokino, V. E. Velculescu, D. B. Levy, R. Parsons, J. M. Trent, D. Lin, W. E. Mercer, K. W. Kinzler, and B. Vogelstein. 1993. WAF1, a potential mediator of p53 tumor suppression. Cell 75:817–825.
  • Evan, G. I., A. H. Wyllie, C. S. Gilbert, T. D. Littlewood, H. Land, M. Brooks, C. M. Waters, L. Z. Penn, and D. C. Hancock. 1992. Induction of apoptosis in fibroblasts by c-myc protein. Cell 69:119–128.
  • Gerber, H. P., M. Hagmann, K. Seipel, O. Georgiev, M. A. West, Y. Litingtung, W. Schaffner, and J. L. Corden. 1995. RNA polymerase II C-terminal domain required for enhancer-driven transcription. Nature 374:660–662.
  • Giaccia, A. 1996. Hypoxic stress proteins: survival of the fittest. Semin. Radiat. Oncol. 6:46–58.
  • Gong, J., X. Li, and Z. Darzynkiewicz. 1993. Different patterns of apoptosis of HL-60 cells induced by cycloheximide and camptothecin. J. Cell. Physiol. 157:263–270.
  • Graeber, T. G., C. Osmanian, T. Jacks, D. E. Housman, C. J. Koch, S. W. Lowe, and A. J. Giaccia. 1996. Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumors. Nature 379:88–91.
  • Graeber, T. G., J. F. Peterson, M. Tsai, K. Monica, A. J. Fornace, Jr., and A. J. Giaccia. 1994. Hypoxia induces accumulation of p53 protein, but activation of a G1-phase checkpoint by low-oxygen conditions is independent of p53 status. Mol. Cell. Biol. 14:6264–6277.
  • Haaf, T., and D. C. Ward. 1996. Inhibition of RNA polymerase II transcription causes chromatin decondensation, loss of nucleolar structure, and dispersion of chromosomal domains. Exp. Cell Res. 224:163–173.
  • Harrington, E. A., A. Fanidi, and G. I. Evan. 1994. Oncogenes and cell death. Curr. Opin. Genet. Dev. 4:120–129.
  • Haupt, Y., Y. Barak, and M. Oren. 1996. Cell type-specific inhibition of p53-mediated apoptosis by mdm2. EMBO J. 15:1596.
  • Helmberg, A., N. Auphan, C. Caelles, and M. Karin. 1995. Glucocorticoid-induced apoptosis of human leukemic cells is caused by the repressive function of the glucocorticoid receptor. EMBO J. 14:452–460.
  • Ishizaki, Y., L. Cheng, A. W. Mudge, and M. C. Raff. 1995. Programmed cell death by default in embryonic cells, fibroblasts and cancer cells. Mol. Biol. Cell 6:1443–1458.
  • Kastan, M. B., C. E. Canman, and C. J. Leonard. 1995. p53, cell cycle control and apoptosis: implications for cancer. Cancer Metastasis Rev. 14:3–15.
  • Kastan, M. B., O. Onyekwere, D. Sidransky, B. Vogelstein, and R. W. Craig. 1991. Participation of p53 in the cellular response to DNA damage. Cancer Res. 51:6304–6311.
  • Kastan, M. B., Q. Zhan, W. El-Deiry, F. Carrier, T. Jacks, W. V. Walsh, B. S. Plunkett, B. Vogelstein, and A. J. Fornace, Jr. 1992. A mammalian cell-cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell 71:587–597.
  • Kessis, T. D., R. J. Slebos, W. G. Nelson, M. B. Kastan, B. S. Plunkett, S. M. Han, A. T. Lorincz, L. Hedrick, and K. R. Cho. 1993. Human papillomavirus 16 E6 expression disrupts the p53-mediated response to DNA damage. Proc. Natl. Acad. Sci. USA 90:3988–3992.
  • Kitada, S., T. Miyashita, S. Tanaka, and J. C. Reed. 1993. Investigations of antisense oligonucleotides targeted against bcl-2 RNAs. Antisense Res. Dev. 3:157–169.
  • Koumenis, C. et al. Unpublished data.
  • Levine, A. J. 1997. p53, the cellular gatekeeper for growth and division. Cell 88:323–331.
  • Linke, S. P., K. C. Clarkin, A. D. Di Leonardo, A. Tsou, and G. M. Wahl. 1996. A reversible, p53-dependent G0-G1 cell cycle arrest induced by ribonucleotide depletion in the absence of detectable DNA damage. Genes Dev. 10:934–947.
  • Littlewood, T. D., D. C. Hancock, P. S. Danielian, M. G. Parker, and G. I. Evan. 1995. A modified oestrogen receptor ligand-binding domain as an improved switch for the regulation of heterologous proteins. Nucleic Acids Res. 23:1686–1690.
  • Liu, Z. G., H. Hsu, D. V. Goeddel, and M. Karin. 1996. Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis while NF-κB activation prevents cell death. Cell 87:565–576.
  • Ljungman, M., and F. Zhang. 1996. Blockage of RNA polymerase as a possible trigger for U.V. light-induced apoptosis. Oncogene 13:823–831.
  • Lowe, S. W., S. Bodis, A. McClatchey, L. Remington, H. E. Ruley, D. E. Fisher, D. E. Housman, and T. Jacks. 1994. p53 status and the efficacy of cancer therapy in vivo. Science 266:807–810.
  • Lowe, S. W., H. E. Ruley, T. Jacks, and D. E. Housman. 1993. p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 74:957–967.
  • Martin, D. P., R. E. Schmidt, P. S. DiStefano, O. H. Lowry, J. G. Carter, and E. M. J. Johnson. 1988. Inhibitors of protein synthesis and RNA synthesis prevent neuronal death caused by nerve growth factor deprivation. J. Cell Biol. 106:829–844.
  • Martin, S. J., and T. G. Cotter. 1994. Apoptosis of human leukemia: induction, morphology, and molecular mechanisms, p. 185–229. In L. D. Tomei and F. O. Cope (ed.), Apoptosis two: the molecular basis of apoptosis in disease. Cold Spring Harbor Laboratory Press, Plainview, N.Y.
  • Murphy, M., A. Hinman, and A. J. Levine. 1996. Wild-type p53 negatively regulates the expression of a microtubule-associated protein. Genes Dev. 10:2971–2980.
  • Raju, U., C. Koumenis, M. Nunez-Regueiro, and A. Eskin. 1991. Alteration of the phase and period of a circadian oscillator by a reversible transcription inhibitor. Science 253:673–675.
  • Rowan, S., R. L. Ludwig, Y. Haupt, S. Bates, X. Lu, M. Oren, and K. H. Vousden. 1996. Specific loss of apoptotic but not cell-cycle arrest function in a tumor derived p53 mutant. EMBO J. 15:827–838.
  • Scheer, U., B. Hugle, R. Hazan, and K. M. Rose. 1984. Drug-induced dispersal of transcribed rRNA genes and transcriptional products: immunolocalization and silver staining of different nucleolar components in rat cells treated with 5,6-dichloro-β-D-ribofuranosylbenzimidazole. J. Cell Biol. 99:672–679.
  • Smith, M. L., I. T. Chen, Q. Zhan, I. Bae, C. Y. Chen, T. M. Gilmer, M. B. Kastan, P. M. O’Connor, and A. J. J. Fornace. 1994. Interaction of the p53-regulated protein Gadd45 with proliferating cell nuclear antigen. Science 266:1376–1380.
  • Tamm, I., R. Hand, and L. A. Caliguri. 1976. Action of dichlorobenzimidazole riboside on RNA synthesis in L-929 and HeLa cells. J. Cell Biol. 69:229–240.
  • Van Antwerp, D. J., S. J. Martin, T. Kafri, D. R. Green, and I. M. Verma. 1996. Suppression of TNF-alpha-induced apoptosis by NF-κB. Science 274:787–789.
  • Vaux, D. L., and I. L. Weissman. 1993. Neither macromolecular synthesis nor myc is required for cell death via the mechanism that can be controlled by Bcl-2. Mol. Cell. Biol. 13:7000–7005.
  • Wang, C. Y., M. W. Mayo, and A. S. Baldwin, Jr. 1996. TNF- and cancer therapy-induced apoptosis: potentiation by inhibition of NF-κB. Science 274:784–787.
  • White, E. 1996. Life, death, and the pursuit of apoptosis. Genes Dev. 10:1–15.
  • Wieland, T., and H. Faulstich. 1991. Fifty years of amanitin. Experientia 47:1186–1193.
  • Windle, B., B. W. Draper, Y. X. Yin, S. O’Gorman, and G. M. Wahl. 1991. A central role for chromosome breakage in gene amplification, deletion formation and amplicon integration. Genes Dev. 5:160–174.
  • Wyllie, A. H. 1994. Death from inside out: an overview. Philos. Trans. R. Soc. Lond. B. 345:237–241.
  • Wyllie, A. H. 1995. The genetic regulation of apoptosis. Curr. Opin. Genet. Dev. 5:97–104.
  • Yamaizumi, M., and T. Sugano. 1994. UV-induced nuclear accumulation of p53 is evoked through DNA damage of actively transcribed genes independent of the cell cycle. Oncogene 9:2775–2784.
  • Yankoulov, K., K. Yamashita, R. Roy, J.-M. Egly, and D. L. Bentley. 1995. The transcriptional elongation inhibitor 5,6-dichloro-1-β-D-ribofuranosylbenzimidazole inhibits transcription factor IIH-associated protein kinase. J. Biol. Chem. 41:23922–23925.
  • Yoon, Y. S., J. W. Kim, K. W. Kang, Y. S. Kim, K. H. Choi, and C. O. Joe. 1996. Poly(ADP-ribosyl)ation of histone H1 correlates with internucleosomal DNA fragmentation during apoptosis. J. Biol. Chem. 271:9129–9134.
  • Zandomeni, R., B. Mittleman, D. Bunick, S. Ackerman, and R. Weinmann. 1982. Mechanism of action of dichloro-β-D-ribofuranosylbenzimidazole: effect on in vitro transcription. Proc. Natl. Acad. Sci. USA 79:3167–3170.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.