5
Views
119
CrossRef citations to date
0
Altmetric
Research Article

IκBα Physically Interacts with a Cytoskeleton-Associated Protein through Its Signal Response Domain

, , , , , & show all
Pages 7375-7385 | Received 11 Dec 1996, Accepted 26 Aug 1997, Published online: 29 Mar 2023

References

  • Abbadie, C., N. Kabrun, F. Bouali, J. Smardova, D. Stehelin, B. Vandenbunder, and P. J. Enrietto. 1993. High levels of c-Rel expression are associated with programmed cell death in the developing avian embryo and in bone marrow cells in vitro. Cell 75:899–912.
  • Alkalay, I., A. Yaron, A. Hatzubai, S. Jung, A. Avraham, O. Gerlitz, I. Pashut-Lavon, and Y. Ben-Neriah. 1995. In vivo stimulation of IκB phosphorylation is not sufficient to activate NF-κB. Mol. Cell. Biol. 15:1294–1301.
  • Alkalay, I., A. Yaron, A. Hatzubai, A. Orian, A. Ciechanover, and Y. Ben-Neriah. 1995. Stimulation-dependent IκBα phosphorylation marks theNF-κB inhibitor for degradation via the ubiquitin-proteasome pathway. Proc. Natl. Acad. Sci. USA 92:10599–10603.
  • Arenzana-Seisdedos, F., J. Thompson, M. S. Rodriguez, F. Bachelerie, D. Thomas, and R. T. Hay. 1995. Inducible nuclear expression of newly synthesized IκBα negatively regulates DNA-binding and transcriptional activities of NF-κB. Mol. Cell. Biol. 15:2689–2696.
  • Arenzana-Seisdedos, F., P. Turpin, M. Rodriguez, D. Thomas, R. T. Hay, J.-L. Virelizier, and C. Dargemont. 1997. Nuclear localization of IκBα promotes active transport of NF-κB from the nucleus to the cytoplasm. J. Cell Sci. 110:369–378.
  • Baeuerle, P. A., and D. Baltimore. 1988. Activation of DNA-binding activity in an apparently cytoplasmic precursor of the NF-κB transcription factor. Cell 53:211–217.
  • Baeuerle, P. A., and D. Baltimore. 1988. IκB: a specific inhibitor of the NF-κB transcription factor. Science 242:540–546.
  • Beauparlant, P., I. Kwan, R. Bitar, P. Chou, A. E. Koromilas, N. Sonenberg, and J. Hiscott. 1994. Disruption of IκBα regulation by antisense RNA expression leads to malignant transformation. Oncogene 9:3189–3197.
  • Beauparlant, P., R. Lin, and J. Hiscott. 1996. The role of the C-terminal domain of IκBα in protein degradation and stability. J. Biol. Chem. 271:10690–10696.
  • Beg, A. A., S. M. Ruben, R. I. Scheinman, S. Haskill, C. A. Rosen, and A. S. Baldwin, Jr. 1992. IκB interacts with the nuclear localization sequence of the subunits of NF-κB: a mechanism for cytoplasmic retention. Genes Dev. 6:1899–1913.
  • Beg, A. A., W. C. Sha, R. T. Bronson, S. Ghosh, and D. Baltimore. 1995. Embryonic lethality and liver degeneration in mice lacking the RelA component of NF-κB. Nature 376:167–170.
  • Brockman, J. A., D. C. Scherer, T. A. McKinsey, S. M. Hall, X. Qi, W. Y. Lee, and D. W. Ballard. 1995. Coupling of a signal response domain in IκBα to multiple pathways for NF-κB activation. Mol. Cell. Biol. 15:2809–2818.
  • Brown, K., S. Gerstberger, L. Carlson, G. Franzoso, and U. Siebenlist. 1995. Control of IκB-α proteolysis by site-specific, signal-induced phosphorylation. Science 267:1485–1488.
  • Brown, K., S. Park, T. Kanno, G. Franzoso, and U. Siebenlist. 1993. Mutual regulation of the transcriptional activator NF-κB and its inhibitor, IκB-α. Proc. Natl. Acad. Sci. USA 90:2532–2536.
  • Chen, Z., J. Hagler, V. J. Palombella, F. Melandri, D. Scherer, D. Ballard, and T. Maniatis. 1995. Signal-induced site-specific phosphorylation targets IκBα to the ubiquitin-proteasome pathway. Genes Dev. 9:1586–1597.
  • Chen, Z. J., L. Parent, and T. Maniatis. 1996. Site-specific phosphorylation of IκBα by a novel ubiquitination-dependent protein kinase activity. Cell 84:853–862.
  • Chu, Z.-L., T. A. McKinsey, L. Liu, X. Qi, and D. W. Ballard. 1996. Basal phosphorylation of the PEST domain in IκBβ regulates its functional interaction with the c-rel proto-oncogene product. Mol. Cell. Biol. 16:5974–5984.
  • Craig, S. W., and R. P. Johnson. 1996. Assembly of focal adhesions: progress, paradigms, and portents. Curr. Opin. Cell Biol. 8:74–85.
  • Crépieux, P. Unpublished data.
  • Dick, T., K. Ray, H. K. Salz, and W. Chia. 1996. Cytoplasmic dynein (ddlc1) mutations cause morphogenetic defects and apoptotic cell death in Drosophila melanogaster. Mol. Cell. Biol. 16:1966–1977.
  • DiDonato, J. A., F. Mercurio, and M. Karin. 1995. Phosphorylation of IκBα precedes but is not sufficient for its dissociation from NF-κB. Mol. Cell. Biol. 15:1302–1311.
  • Dillman, J. F., III, L. P. Dabney, and K. K. Pfister. 1996. Cytoplasmic dynein is associated with slow axonal transport. Proc. Natl. Acad. Sci. USA 93:141–144.
  • Evan, G. I., G. K. Lewis, G. Ramsay, and J. M. Bishop. 1985. Isolation of monoclonal antibodies specific for human c-myc proto-oncogene product. Mol. Cell. Biol. 5:3610–3616.
  • Finco, T. S., A. A. Beg, and A. S. Baldwin, Jr. 1994. Inducible phosphorylation of IκBα is not sufficient for its dissociation from NF-κB and is inhibited by protease inhibitors. Proc. Natl. Acad. Sci. USA 91:11884–11888.
  • Fritz, C. C., and M. R. Green. 1996. HIV Rev uses a conserved cellular protein export pathway for the nucleocytoplasmic transport of viral RNAs. Curr. Biol. 6:848–854.
  • Frost, J. A., S. Xu, M. R. Hutchison, S. Marcus, and M. H. Cobb. 1996. Actions of Rho family small G proteins and p21-activated protein kinases on mitogen-activated protein kinase family members. Mol. Cell. Biol. 16:3707–3713.
  • Fuerst, T. R., E. G. Niles, F. W. Studier, and B. Moss. 1986. Eukaryotic transient-expression system based on recombinant vaccinia virus that synthesizes T7 RNA polymerase. Proc. Natl. Acad. Sci. USA 83:8122–8126.
  • Gilmore, T., and P. Morin. 1993. The IκB proteins: members of a multifunctional family. Trends Genet. 9:427–433.
  • Glotzer, M., and A. A. Hyman. 1995. The importance of being polar. Curr. Biol. 5:1102–1105.
  • Hatada, E. N., M. Naumann, and C. Scheidereit. 1993. Common structural constituents confer IκB activity to NF-κB p105 and IκB/MAD-3. EMBO J. 12:2781–2788.
  • Hollenberg, S. M., R. Sternglanz, P. F. Cheng, and H. Weintraub. 1995. Identification of a new family of tissue-specific basic helix-loop-helix proteins with a two-hybrid system. Mol. Cell. Biol. 15:3813–3822.
  • Imbert, V., R. A. Rupec, A. Livolsi, H. L. Pahl, E. B.-M. Traenckner, C. Mueller-Dieckmann, D. Farahifar, B. Rossi, P. Auberger, P. A. Baeuerle, and J.-F. Peyron. 1996. Tyrosine phosphorylation of IκB-α activates NF-κB without proteolytic degradation of IκB-α. Cell 86:787–798.
  • Ingber, D. E. 1993. The riddle of morphogenesis: a question of solution chemistry or molecular cell engineering? Cell 75:1249–1252.
  • Inoue, J. I., L. D. Kerr, D. Rashid, N. Davis, and H. R. Bose, Jr. 1992. Direct association of pp40/IκBβ with rel/NF-κB transcription factors: role of ankyrin repeats in the inhibition of DNA binding activity. Proc. Natl. Acad. Sci. USA 89:4333–4337.
  • Jaffray, E., K. M. Wood, and R. T. Hay. 1995. Domain organization of IκBα and sites of interaction with NF-κB p65. Mol. Cell. Biol. 15:2166–2172.
  • Katagari, K., T. Katagari, K. Kajiyama, T. Yamamoto, and T. Yoshida. 1993. Tyrosine-phosphorylation of tubulin during monocytic differentiation of HL-60 cells. J. Immunol. 150:585–593.
  • King, S. M., E. Barbares, J. F. Dillman, R. S. Patel-King, J. H. Carson, and K. K. Pfister. 1996. Brain cytoplasmic and flagellar outer arm dyneins share a highly conserved Mr8,000 light chain. J. Biol. Chem. 271:19358–19366.
  • King, S. M., and R. S. Patel-King. 1995. The Mr = 8,000 and 11,000 outer arm dynein light chains from Chlamydomonas flagella have cytoplasmic homologues. J. Biol. Chem. 270:11445–11452.
  • Kontgen, F., R. J. Grumont, A. Strasser, D. Metcalf, R. Li, D. Tarlington, and S. Gerondakis. 1995. Mice lacking the c-rel proto-oncogene exhibit defects in lymphocyte proliferation, humoral immunity and interleukin-2 expression. Genes Dev. 9:1965–1977.
  • Le Bail, O., R. Schmidt-Ullrich, and A. Israël. 1993. Promoter analysis of the gene encoding the IκBα/MAD-3 inhibitor of NF-κB: positive regulation by members of the rel/NF-κB family. EMBO J. 12:5043–5049.
  • Lee, F. S., J. Hagler, Z. J. Chen, and T. Maniatis. 1997. Activation of the IκBα kinase complex by MEKK1, a kinase of the JNK pathway. Cell 88:213–222.
  • Lee, J. S., D. von der Ahe, B. Kiefer, and Y. Nagamine. 1993. Cytoskeletal reorganization and TPA differently modify AP-1 to induce the urokinasetype plasminogen activator gene in LLC-PK1cells. Nucleic Acids Res. 21:3365–3372.
  • Lin, R., P. Beauparlant, C. Makris, S. Meloche, and J. Hiscott. 1996. Phosphorylation of IκBα in the C-terminal PEST domain by casein kinase II affects intrinsic protein stability. Mol. Cell. Biol. 16:1401–1409.
  • Lin, Y.-C., K. Brown, and U. Siebenlist. 1995. Activation of NF-κB requires proteolysis of the inhibitor IκB-α: signal-induced phosphorylation of IκB-α alone does not release active NF-κB. Proc. Natl. Acad. Sci. USA 92:552–556.
  • Lux, S. E., K. M. John, and V. Bennett. 1990. Analysis of cDNA for human erythrocyte ankyrin indicates a repeated structure with homology to tissuedifferentiation and cell-cycle control proteins. Nature 344:36–42.
  • Manie, S., A. Schmid-Alliana, J. Kubar, B. Ferrua, and B. Rossi. 1993. Disruption of microtubule network in human monocytes induces expression of interleukin-1 but not that of interleukin-6 or tumor necrosis factor-a. J. Biol. Chem. 268:13675–13681.
  • Miyamoto, S., M. Maki, M. J. Schmitt, M. Hatanaka, and I. M. Verma. 1994. Tumor necrosis factor α-induced phosphorylation of IκBα is a signal for its degradation but not dissociation from NF-κB. Proc. Natl. Acad. Sci. USA 91:12740–12744.
  • Morin, P., G. S. Subramanian, and T. D. Gilmore. 1993. GAL4-IκBα and GAL4-IκBγ activate transcription by different mechanisms. Nucleic Acids Res. 21:2157–2163.
  • Morin, P. J., and T. D. Gilmore. 1992. The c-terminus of the NF-κB p50 precursor and an IκB isoform contain transcription activation domains. Nucleic Acids Res. 20:2453–2455.
  • Murti, K. G., H. T. Smith, and V. A. Fried. 1988. Ubiquitin is a component of the microtubule network. Proc. Natl. Acad. Sci. USA 85:3019–3023.
  • Negrutskii, B. S., and M. P. Deutscher. 1992. A sequestered pool of aminoacyl-tRNA in mammalian cells. Proc. Natl. Acad. Sci. USA 89:3601–3604.
  • Niclas, J., V. J. Allan, and R. D. Vale. 1996. Cell cycle regulation of dynein association with membranes modulates microtubule-based organelle transport. J. Cell Biol. 133:585–593.
  • Nobes, C. D., P. Hawkins, L. Stephens, and A. Hall. 1995. Activation of the small GTP-binding proteins rho and rac by growth factor receptors. J. Cell Sci. 108:225–232.
  • Pepin, N., A. Roulston, J. Lacoste, R. Lin, and J. Hiscott. 1994. Subcellular redistribution of HTLV-1-Tax protein by NF-κB/Rel transcription factors. Virology 204:706–716.
  • Régnier, C., H. Y. Song, X. Gao, D. V. Goeddel, Z. Cao, and M. Rothe. 1997. Identification and characterization of an IκB kinase. Cell 90:373–383.
  • Reszka, A. A., R. Seger, C. D. Diltz, E. G. Krebs, and E. H. Fisher. 1995. Association of mitogen-activated protein kinase with the microtubule cytoskeleton. Proc. Natl. Acad. Sci. USA 92:8881–8885.
  • Richard, S., D. Yu, K. J. Blumer, D. Hausladen, M. W. Olszowy, P. A. Connelly, and A. S. Shaw. 1995. Association of p62, a multifunctional SH2- and SH3-domain-binding protein, with src family tyrosine kinases, Grb2, and phospholipase Cγ-1. Mol. Cell. Biol. 15:186–197.
  • Rodriguez, M. S., J. Wright, J. Thompson, D. Thomas, F. Baleux, J. L. Virelizier, R. T. Hay, and F. Arenzana-Seisdedos. 1996. Identification of lysine residues for signal-induced ubiquitination and degradation of IκBα in vivo. Oncogene 12:2425–2435.
  • Rosette, C., and M. Karin. 1995. Cytoskeletal control of gene expression: depolymerization of microtubules activates NF-κB. J. Cell. Biochem. 128:1111–1119.
  • Scherer, D. C., J. A. Brockman, Z. Chen, T. Maniatis, and D. W. Ballard. 1995. Signal-induced degradation of IκBα requires site-specific ubiquitination. Proc. Natl. Acad. Sci. USA 92:11259–11263.
  • Schiestl, R. H., and R. D. Gietz. 1989. High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Curr. Genet. 16:339–346.
  • Shaw, A. S., K. E. Amrein, C. Hammond, D. F. Stern, B. M. Sefton, and J. K. Rose. 1989. The lck tyrosine protein kinase interacts with the cytoplasmic tail of the CD4 glycoprotein through its unique amino-terminal domain. Cell 59:627–636.
  • Sulciner, D. J., K. Irani, Z.-X. Yu, V. J. Ferrans, P. Goldschmidt-Clermont, and T. Finkel. 1996. rac1 regulates a cytokine-stimulated, redox-dependent pathway necessary for NF-κB activation. Mol. Cell. Biol. 16:7115–7121.
  • Sun, S.-C., P. A. Ganchi, D. W. Ballard, and W. C. Greene. 1993. NF-κB controls expression of inhibitor IκBα: evidence for an inducible autoregulatory pathway. Science 259:1912–1915.
  • Suyang, H., R. Phillips, I. Douglas, and S. Ghosh. 1996. Role of unphosphorylated, newly synthesized IκBβ in persistent activation of NF-κB. Mol. Cell. Biol. 16:5444–5449.
  • Traenckner, E. B.-M., S. Wilk, and P. A. Baeuerle. 1994. A proteasome inhibitor prevents activation of NF-κB and stabilizes a newly phosphorylated form of IκB-α that is still bound to NF-κB. EMBO J. 13:5433–5441.
  • Traenckner, E. B. M., H. L. Pahl, T. Henkel, K. N. Schmidt, S. Wilk, and P. A. Baeuerle. 1995. Phosphorylation of human IκBα on serines 32 and 36 controls IκBα proteolysis and NF-κB activation in response to diverse stimuli. EMBO J. 14:2876–2883.
  • Trausch, J. S., S. J. Grenfell, P. M. Handley-Gearhart, A. Ciechanover, and A. L. Schwartz. 1993. Immunofluorescent localization of the ubiquitin-activating enzyme, E1, to the nucleus and cytoskeleton. Am. J. Physiol. 264:C93–C102.
  • Vaisberg, E. A., M. P. Koonce, and J. R. McIntosh. 1993. Cytoplasmic dynein plays a role in mammalian mitotic spindle formation. J. Cell Biol. 123:849–858.
  • Vallee, R. 1993. Molecular analysis of the microtubule motor dynein. Proc. Natl. Acad. Sci. USA 90:8769–8772.
  • Verma, I. M., J. K. Stevenson, E. M. Schwarz, D. V. Antwerp, and S. Miyamoto. 1995. Rel/NF-κB/IκB family: intimate tales of association and dissociation. Genes Dev. 9:2723–2735.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.