2
Views
60
CrossRef citations to date
0
Altmetric
Research Article

Adenovirus-Mediated Overexpression of IRS-1 Interacting Domains Abolishes Insulin-Stimulated Mitogenesis without Affecting Glucose Transport in 3T3-L1 Adipocytes

, , , &
Pages 7386-7397 | Received 02 Jul 1997, Accepted 26 Sep 1997, Published online: 29 Mar 2023

References

  • Araki, E., M. A. Lipes, M.-E. Patti, J. C. Bruning, B. Haag III, R. S. Johnson, and C. R. Kahn. 1994. Alternative pathway of insulin signalling in mice with targeted disruption of the IRS-1 gene. Nature 372:186–190.
  • Backer, J. M., M. G. Myers, Jr., X.-J. Sun, D. J. Chin, S. E. Shoelson, M. Miralpeix, and M. F. White. 1993. Association of IRS-1 with the insulin receptor and the phosphatidylinositol 3′-kinase. J. Biol. Chem. 268:8204–8212.
  • Blaikie, P., D. Immanuel, J. Wu, N. Li, V. Yajnik, and B. Margolis. 1994. A region in Shc distinct from the SH2 domain can bind tyrosine-phosphorylated growth factor receptors. J. Biol. Chem. 269:32031–32034.
  • Cheatham, B., and C. R. Kahn. 1995. Insulin action and the insulin signalling network. Endocr. Rev. 16:117–142.
  • Cheatham, B., C. J. Vlahos, L. Cheatham, L. Wang, J. Blenis, and C. R. Kahn. 1994. Phosphatidylinositol 3-kinase activation is required for insulin stimulation of pp70 S6 kinase, DNA synthesis, and glucose transporter translocation. Mol. Cell. Biol. 14:4902–4911.
  • Chung, J., C. J. Kuo, G. R. Crabtree, and J. Blenis. 1992. Rapamycin-FKBP specifically blocks growth-dependent activation of and signalling by the 70 kd S6 protein kinsase. Cell 69:1227–1236.
  • Clarke, J. F., P. W. Young, K. Yonezawa, M. Kasuga, and G. D. Holman. 1994. Inhibition of translocation of GLUT1 and GLUT4 in 3T3-L1 cells by the phosphatidylinositol 3-kinase inhibitor, wortmannin. Biochem. J. 300:631–635.
  • Craparo, A., T. J. O’Neill, and T. A. Gustafson. 1995. Non-SH2 domains within insulin receptor substrate-1 and SHC mediate their phosphotyrosinedependent interaction with the NPEY motif of the insulin-like growth factor 1 receptor. J. Biol. Chem. 270:15639–15643.
  • Datta, K., A. Bellacosa, T. O. Chan, and P. N. Tsichlis. 1996. Akt is a direct target of the phosphatidylinositol 3-kinase. J. Biol. Chem. 271:30835–30839.
  • Eck, M. J., S. Dhe-Paganon, T. Trub, R. T. Nolte, and S. E. Shoelson. 1996. Structure of the IRS-1 PTB domain bound to the juxtamembrane region of the insulin receptor. Cell 85:695–705.
  • Gluzman, Y., H. Reichl, and D. Solnick. 1982. Helper-free adenovirus type-5 vectors, p. 187–192. In Y. Gluzman (ed.), Eucaryotic viral vectors, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Gustafson, T. A., W. He, A. Craparo, C. D. Schaub, and T. J. O’Neill. 1995. Phosphotyrosine-dependent interaction of SHC and insulin receptor substrate 1 with the NPEY motif of the insulin receptor via a novel non-SH2 domain. Mol. Cell. Biol. 15:2500–2508.
  • Haruta, T., A. J. Morris, D. W. Rose, J. G. Nelson, M. Mueckler, and J. M. Olefsky. 1995. Insulin-stimulated GLUT4 translocation is mediated by a divergent intracellular signalling pathway. J. Biol. Chem. 270:27991–27994.
  • He, W., T. J. O’Neill, and T. A. Gustafson. 1995. Distinct modes of interaction of SHC and insulin receptor substrate-1 with the insulin receptor NPEY region via non-SH2 domains. J. Biol. Chem. 270:23258–23262.
  • Holgado-Madruga, M., D. R. Emlet, D. K. Moscatello, A. K. Godwin, and A. J. Wong. 1996. A Grb2-associated docking protein in EGF- and insulinreceptor signalling. Nature 379:560–564.
  • Isakoff, S. J., Y.-P. Yu, Y.-C. Su, P. Blaikie, V. Yajnik, E. Rose, K. M. Weidner, M. Sachs, B. Margolis, and E. Y. Skolnik. 1996. Interaction between the phosphotyrosine binding domain of Shc and the insulin receptor is required for Shc phosphorylation by insulin in vivo. J. Biol. Chem. 271:3959–3962.
  • Jhun, B. H., D. W. Rose, B. L. Seely, L. Rameh, L. Cantley, A. R. Saltiel, and J. M. Olefsky. 1994. Microinjection of the SH2 domain of the 85-kilodalton subunit of phosphatidylinositol 3-kinase inhibits insulin-induced DNA synthesis and c-fos expression. Mol. Cell. Biol. 14:7466–7475.
  • Kavanaugh, W. M., and L. T. Williams. 1994. An alternative to SH2 domains for binding tyrosine-phosphorylated proteins. Science 266:1862–1865.
  • Klip, A., G. Li, and W. J. Logan. 1984. Induction of sugar uptake in response to insulin by serum depletion in fusing L6 myoblasts. Am. J. Physiol. 247:E291–E296.
  • Kohn, A. D., K. S. Kovacina, and R. A. Roth. 1995. Insulin stimulates the kinase activity of RAC-PK, a pleckstrin homology domain containing ser/thr kinase. EMBO J. 14:4288–4295.
  • Kohn, A. D., S. A. Summers, M. J. Birnbaum, and R. A. Roth. 1996. Expression of a constitutively active Akt Ser/Thr kinase in 3T3-L1 adipocytes stimulates glucose uptake and glucose transporter 4 translocation. J. Biol. Chem. 271:31372–31378.
  • Lavan, B. E., and G. E. Lienhard. 1993. The insulin-elicited 60-kDa phosphotyrosine protein in rat adipocytes is associated with phosphatidylinositol 3-kinase. J. Biol. Chem. 268:5921–5928.
  • Levy-Toledano, R., M. Taouis, D. H. Blaettler, P. Gorden, and S. I. Taylor. 1994. Insulin-induced activation of phosphatidyl inositol 3-kinase. J. Biol. Chem. 269:31178–31182.
  • McGrory, W. J., D. S. Bautista, and F. L. Graham. 1988. A simple technique for the rescue of early region I mutations into infectious human adenovirus type 5. Virology 163:614–617.
  • Momomura, K., K. Tobe, Y. Seyama, F. Takaku, and M. Kasuga. 1988. Insulin-induced tyrosine-phosphorylation in intact rat adipocytes. Biochem. Biophys. Res. Commun. 155:1181–1186.
  • Morris, A. J., S. S. Martin, T. Haruta, J. G. Nelson, P. Vollenweider, T. A. Gustafson, M. Mueckler, D. W. Rose, and J. M. Olefsky. 1996. Evidence for an insulin receptor substrate 1 independent insulin signalling pathway that mediates insulin-responsive glucose transporter (GLUT4) translocation. Proc. Natl. Acad. Sci. USA 93:8401–8406.
  • Myers, M. G., Jr., T. C. Grammer, J. Brooks, E. M. Glasheen, L.-M. Wang, X. J. Sun, J. Blenis, J. H. Pierce, and M. F. White. 1995. The pleckstrin homology domain in insulin receptor substrate-1 sensitizes insulin signalling. J. Biol. Chem. 270:11715–11718.
  • Myers, M. G., Jr., and M. F. White. 1995. New frontiers in insulin receptor substrate signalling. Trends Endocrinol. Metab. 6:209–215.
  • Okada, T., Y. Kawano, T. Sakakibara, O. Hazeki, and M. Ui. 1994. Essential role of phosphatidylinositol 3-kinase in insulin-induced glucose transport and antilipolysis in rat adipocytes. J. Biol. Chem. 269:3568–3573.
  • Ouwens, D. M., G. C. M. van der Zon, G. J. Pronk, J. L. Bos, W. Moller, B. Cheatham, C. R. Khan, and J. A. Maassen. 1994. A mutant insulin receptor induces formation of a Shc-growth factor receptor bound protein 2 (Grb2) complex and p21ras-GTP without detectable interaction of insulin receptor substrate 1 (IRS1) with Grb2. J. Biol. Chem. 269:33116–33122.
  • Patti, M.-E., X.-J. Sun, J. C. Bruening, E. Araki, M. A. Lipes, M. F. White, and C. R. Kahn. 1995. 4PS/insulin receptor substrate (IRS)-2 is the alternative substrate of the insulin receptor in IRS-1 deficient mice. J. Biol. Chem. 270:24670–24673.
  • Pronk, G. J., J. McGlade, G. Pelicci, T. Pawson, and J. L. Bos. 1993. Insulin-induced phosphorylation of the p46- and 52-kDa Shc proteins. J. Biol. Chem. 268:5748–5753.
  • Pronk, G. J., A. M. M. De Vries-Smits, L. Buday, J. Downward, J. A. Maassen, R. H. Medema, and J. L. Bos. 1994. Involvement of Shc in insulin- and epidermal growth factor-induced activation of p21ras. Mol. Cell. Biol. 14:1575–1581.
  • Quon, M. J., A. J. Butte, M. J. Zarnowski, G. Sesti, S. W. Cushman, and S. I. Taylor. 1994. Insulin receptor substrate 1 mediates the stimulatory effect of insulin on GLUT4 translocation in transfected rat adipose cells. J. Biol. Chem. 269:27920–27924.
  • Rose, D. W., A. R. Saltiel, M. Majumdar, S. J. Decker, and J. M. Olefsky. 1994. Insulin receptor substrate 1 is required for insulin-mediated mitogenic signal transduction. Proc. Natl. Acad. Sci. USA 91:797–801.
  • Ruderman, N. B., R. Kapeller, M. F. White, and L. C. Cantley. 1990. Activation of phosphatidylinositol 3-kinase by insulin. Proc. Natl. Acad., Sci. USA 87:1411–1415.
  • Sasaoka, T., B. Draznin, J. W. Leitner, W. J. Langlois, and J. M. Olefsky. 1994. Shc is the predominant signalling molecule coupling insulin receptors to activation of guanine nucleotide releasing factor and p21ras-GTP formation. J. Biol. Chem. 269:10734–10738.
  • Sharma, P. M., M. Bowman, B.-F. Yu, and S. Sukumar. 1994. An animal model for human Wilm’s tumors: embryonal kidney neoplasms in rats induced by N-nitroso-N′-methyl urea. Proc. Natl. Acad. Sci. USA 91:9931–9935.
  • Skolnik, E. Y., A. Batzer, N. Li, C.-H. Lee, E. Lowenstein, M. Mohammadi, B. Margolis, and J. Schlessinger. 1993. The function of GRB2 in linking the insulin receptor to Ras signalling pathways. Science 260:1953–1955.
  • Skolnik, E. Y., C.-H. Lee, A. Batzer, L. M. Vicentini, M. Zhou, R. Daly, M. J. Myers, Jr., J. M. Backer, A. Ullrich, M. F. White, and J. Schlessinger. 1993. The SH2/SH3 domain-containing protein GRB2 interacts with tyrosinephosphorylated IRS1 and Shc: implications for insulin control of ras signalling. EMBO J. 12:1929–1936.
  • Sun, X. J., P. Rothenberg, C. R. Kahn, J. M. Backer, E. Araki, P. A. Wilden, D. A. Cahill, B. J. Goldstein, and M. F. White. 1991. Structure of the insulin receptor substrate IRS-1 defines a unique signal transduction protein. Nature 352:73–77.
  • Sun, X. J., L.-M. Wang, Y. Zhang, L. Yenush, M. G. Myers, Jr., E. Glasheen, W. S. Lane, J. H. Pierce, and M. F. White. 1995. Role of IRS-2 in insulin and cytokine signalling. Nature 377:173–177.
  • Tamemoto, H., T. Kadowaki, K. Tobe, T. Yagi, H. Sakura, T. Hayakawa, Y. Terauchi, K. Ueki, Y. Kaburagi, S. Satoh, H. Sekihara, S. Yoshioka, H. Horikoshi, Y. Furuta, Y. Ikawa, M. Kasuga, Y. Yazaki, and S. Aizawa. 1994. Insulin resistance and growth retardation in mice lacking insulin receptor substrate-1. Nature 372:182–186.
  • Tartare-Deckert, S., D. Sawka-Verhelle, J. Murdaca, and E. V. Obberghen. 1995. Evidence for a differential interaction of SHC and the insulin receptor substrate-1 (IRS-1) with the insulin-like growth factor-1 (IGF-1) receptor in the yeast two-hybrid system. J. Biol. Chem. 270:23456–23460.
  • Tobe, K., H. Tamemoto, T. Yamauchi, S. Aizawa, Y. Yazaki, and T. Kadowaki. 1995. Identification of a 190-kDa protein as a novel substrate for the insulin receptor kinase functionally similar to insulin receptor substrate-1. J. Biol. Chem. 270:5698–5701.
  • Van Horn, D. J., M. G. Myers, Jr., and J. M. Backer. 1994. Direct activation of the phosphatidylinositol 3′-kinase by the insulin receptor. J. Biol. Chem. 269:29–32.
  • Voliovitch, H., D. G. Schindler, Y. R. Hadari, S. I. Taylor, D. Accili, and Y. Zick. 1995. Tyrosine phosphorylation of insulin receptor substrate-1 in vivo depends upon the presence of its pleckstrin homology region. J. Biol. Chem. 270:18083–18087.
  • Waters, S. B., and J. E. Pessin. 1996. Insulin receptor substrate 1 and 2 (IRS1 and IRS2): what a tangled web we weave. Trends Cell. Biol. 6:1–4.
  • White, M. F., R. Maron, and C. R. Kahn. 1985. Insulin rapidly stimulates tyrosine phosphorylation of a Mr-185,000 protein in intact cells. Nature 318:183–186.
  • Yeh, T. C., W. Ogawa, A. G. Danielsen, and R. A. Roth. 1996. Characterization and cloning of a 58/53-kDa substrate of the insulin receptor tyrosine kinase. J. Biol. Chem. 271:2921–2928.
  • Zhang, W.-W., P. E. Koch, and J. A. Roth. 1995. Detection of wild-type contamination in a recombinant adenoviral preparation by PCR. Biotechniques 18:444–447.
  • Zhang-Sun, G., C.-R. Yang, J. Viallet, G.-S. Feng, J. J. M. Bergeron, and B. I. Posner. 1996. A 60-kilodalton protein in rat hepatoma cells overexpressing insulin receptor was tyrosine phosphorylated and associated with Syp, phosphatidylinositol 3-kinase, and Grb2 in an insulin-dependent manner. Endocrinology 137:2649–2658.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.