1
Views
27
CrossRef citations to date
0
Altmetric
Research Article

The Adenovirus E1A-Regulated Transcription Factor E4F Is Generated from the Human Homolog of Nuclear Factor ϕAP3

&
Pages 1890-1903 | Received 19 Apr 1996, Accepted 31 Dec 1996, Published online: 29 Mar 2023

REFERENCES

  • Akira, S., I. Isshiki, T. Sugita, O. Tanabe, S. Kinoshita, Y. Nishio, T. Nakajima, T. Hirano, and T. Kishimoto. 1990. A nuclear factor for IL-6 expression (NF-IL-6) is a member of a C/EBP family. EMBO J. 9:1897–1906.
  • Andersson, S., D. L. Davis, H. Dahlback, H. Jornvall, and D. W. Russell. 1989. Cloning, structure, and expression of the mitochondrial cytochrome P-450 sterol 26-hydroxylase, a bile acid biosynthetic enzyme. J. Biol. Chem. 264:8222–8229.
  • Berger, J., J. Hauber, R. Hauber, R. Geiger, and B. R. Cullen. 1988. Secreted placental alkaline phosphatase: a powerful new quantitative indicator of gene expression in eukaryotic cells. Gene 66:1–10.
  • Berk, A. J. 1986. Adenovirus promoters and E1A transactivation. Annu. Rev. Genet. 20:45–79.
  • Bondesson, M., C. Svensson, S. Linder, and G. Akusjarvi. 1992. The car- boxy-terminal exon of the adenovirus E1A protein is required for E4F- dependent transcription activation. EMBO J. 11:3347–3354.
  • Boyer, T. G., and A. J. Berk. 1993. Functional interaction of adenovirus E1A with holo TFIID. Genes Dev. 7:1810–1823.
  • Braithwaite, A. W., C. C. Nelson, and A. J. D. Bellet. 1991. E1a revisited: the case for multiple cooperative trans-activation domains. New Biol. 3:18–26.
  • Chatton, B., J. L. Bocco, M. Gaire, C. Hauss, B. Reimund, J. Goetz, and C. Kedinger. 1993. Transcriptional activation by the adenovirus larger E1a product is mediated by members of the cellular transcription factor ATF family which can directly associate with E1A. Mol. Cell. Biol. 13:561–570.
  • Chellappan, S. P., and J. R. Nevins. 1990. DNA octamer element can confer E1A trans-activation, and adenovirus infection results in a stimulation of the DNA-binding activity of OTF-1/NFIII factor. Proc. Natl. Acad. Sci. USA 87:5878–5882.
  • Chomczynski, P., and N. Sacchi. 1987. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Bio- chem. 162:156–159.
  • Eckner, R., M. E. Ewen, D. Newsome, M. Gerdes, J. A. DeCaprio, J. B. Lawrence, and D. M. Livingston. 1994. Molecular cloning and functional analysis of the adenovirus E1A-associated 300-kD protein (p300) reveals a protein with properties of a transcriptional adaptor. Genes Dev. 8:869–884.
  • Engel, D. A., U. Muller, R. W. Gedrich, J. S. Eubanks, and T. Shenk. 1991. Induction of c-fos mRNA and AP-1 DNA-binding activity by cAMP in cooperation with either the adenovirus 243- or the adenovirus 289-amino acid E1A protein. Proc. Natl. Acad. Sci. USA 88:3957–3961.
  • Flint, J., and T. Shenk. 1989. Adenovirus E1A protein paradigm viral transactivator. Annu. Rev. Genet. 23:141–161.
  • Fognani, C., G. Della Valle, and L. E. Babiss. 1993. Repression of adenovirus E1A enhancer activity by a novel zinc finger-containing DNA-binding protein related to the GLI-Kruppel protein. EMBO J. 12:4985–4992.
  • Garfin, D. E. 1990. One-dimensional gel electrophoresis. Methods Enzymol. 182:425–441.
  • Gorman, C. M., L. F. Moffat, and B. H. Howard. 1982. Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol. Cell. Biol. 2:1044–1051.
  • Hai, T. W., F. Liu, W. J. Coukos, and M. R. Green. 1989. Transcription factor ATF cDNA clones: an extensive family of leucine zipper proteins able to selectively form DNA-binding heterodimers. Genes Dev. 3:2083–2090.
  • Harlow, E., and D. Lane. 1988. Antibodies: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Harrison, S. C. 1991. A structural taxonomy of DNA-binding domains. Nature 353:715–719.
  • Hoeffler, W. K., R. Kovelman, and R. G. Roeder. 1988. Activation of transcription factor IIIC by the adenovirus E1A protein. Cell 53:907–920.
  • Jones, C., and K. A. Lee. 1991. E1A-mediated activation of the adenovirus E4 promoter can occur independently of the cellular transcription factor E4F. Mol. Cell. Biol. 11:4297–4305.
  • Kawai, S., and M. Nishizawa. 1984. New procedure for DNA transfection with polycation and dimethyl sulfoxide. Mol. Cell. Biol. 4:1172–1174.
  • Kovesdi, I., R. Reichel, and J. R. Nevins. 1986. Identification of a cellular transcription factor involved in E1A trans-activation. Cell 45:219–228.
  • Kraus, V. B., E. Moran, and J. R. Nevins. 1992. Promoter-specific transactivation by the adenovirus E1A12S product involves separate E1A domains. Mol. Cell. Biol. 12:4391–4399.
  • Lee, K. A., T. Y. Hai, L. SivaRaman, B. Thimmappaya, H. C. Hurst, N. C. Jones, and M. R. Green. 1987. A cellular protein, activating transcription factor, activates transcription of multiple E1A-inducible adenovirus early promoters. Proc. Natl. Acad. Sci. USA 84:8355–8359.
  • Liu, F., and M. R. Green. 1990. A specific member of the ATF transcription factor family can mediate transcription activation by the adenovirus E1A protein. Cell 61:1217–1224.
  • Morris, G. F., and M. B. Mathews. 1991. The adenovirus E1A transforming protein activates the proliferating cell nuclear antigen promoter via an activating transcription factor site. J. Virol. 65:6397–6406.
  • Nevins, J. R. 1991. Transcriptional activation by viral regulatory proteins. Trends Biochem. Sci. 16:435–439.
  • Nevins, J. R. 1992. E2F: a link between the Rb tumor suppressor protein and viral oncoproteins. Science 258:424–429.
  • Nicholas, J., and J. R. Nevins. 1991. Distinct DNA targets for trans-activa- tion by HTLV-1 tax and adenovirus E1A. Virology 182:156–167.
  • Orejas, M., E. A. Espeso, J. Tilburn, S. Sarkar, H. N. Arst, Jr., and M. A. Peñalva. 1995. Activation of the Aspergillus PacC transcription factor in response to alkaline ambient pH requires proteolysis of the carboxy-terminal moiety. Genes Dev. 9:1622–1632.
  • Pabo, C. O., and R. T. Sauer. 1992. Transcription factors: structural families and principles of DNA recognition. Annu. Rev. Biochem. 61:1053–1095.
  • Raychaudhuri, P., R. Rooney, and J. R. Nevins. 1987. Identification of an E1A-inducible cellular factor that interacts with regulatory sequences within the adenovirus E4 promoter. EMBO J. 6:4073–4081.
  • Raychaudhuri, P., S. Bagchi, and J. R. Nevins. 1989. DNA-binding activity of the adenovirus-induced E4F transcription factor is regulated by phosphorylation. Genes Dev. 3:620–627.
  • Rooney, R. J., P. Raychaudhuri, and J. R. Nevins. 1990. E4F and ATF, two transcription factors that recognize the same site, can be distinguished both physically and functionally: a role for E4F in E1A trans activation. Mol. Cell. Biol. 10:5138–5149.
  • Rooney, R. J., and E. R. Fernandes. Unpublished data.
  • Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Scholer, H. R., T. Ciesiolka, and P. Gruss. 1991. A nexus between Oct-4 and E1A: implications for gene regulation in embryonic stem cells. Cell 66:291–304.
  • Shi, Y., E. Seto, L. S. Chang, and T. Shenk. 1991. Transcriptional repression by YY1, a human GLI-Kruppel-related protein, and relief of repression by adenovirus E1A protein. Cell 67:377–388.
  • Simon, M. C., T. M. Fisch, B. J. Benecke, J. R. Nevins, and N. Heintz. 1988. Definition of multiple, functionally distinct TATA elements, one of which is a target in the hsp70 promoter for E1A regulation. Cell 52:723–729.
  • Thanos, D., and T. Maniatis. 1995. NF-kB: a lesson in family values. Cell 80:529–532.
  • Tilburn, J., S. Sarkar, D. A. Widdick, E. A. Espeso, M. Orejas, J. Mungroo, M. A. Pennalva, and H. N. Arst, Jr. 1995. The Aspergillus PacC zinc finger transcription factor mediates regulation of both acid- and alkaline-expressed genes by ambient pH. EMBO J. 14:779–790.
  • van Dam, H., M. Duyndam, R. Rottier, A. Bosch, L. de Vries-Smits, P. Herrlich, A. Zantema, P. Angel, and A. J. van der Eb. 1993. Heterodimer formation of cJun and ATF-2 is responsible for induction of c-jun by the 243 amino acid adenovirus E1A protein. EMBO J. 12:479–487.
  • Vinson, C. R., K. L. LaMarco, P. F. Johnson, W. H. Landschulz, and S. L. McKnight. 1988. In situ detection of sequence-specific DNA binding activity specified by a recombinant bacteriophage. Genes Dev. 2:801–806.
  • Wang, X., R. Sato, M. S. Brown, X. Hua, and J. L. Goldstein. 1994. SREBP-1, a membrane-bound transcription factor released by sterol-regulated proteolysis. Cell 77:53–62.
  • White, E., and R. Cipriani. 1990. Role of adenovirus E1B proteins in transformation: altered organization of intermediate filaments in transformed cells that express the 19-kilodalton protein. Mol. Cell. Biol. 10:120–130.
  • Yoshimura, T., J. Fujisawa, and M. Yoshida. 1990. Multiple cDNA clones encoding nuclear proteins that bind to the tax-dependent enhancer of HTLV-1: all contain a leucine zipper structure and basic amino acid domain. EMBO J. 9:2537–2542.
  • Yoshinaga, S., N. Dean, M. Han, and A. J. Berk. 1986. Adenovirus stimulation of transcription by RNA polymerase III: evidence for an E1A-depen- dent increase in transcription factor IIIC concentration. EMBO J. 5:343–354.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.