4
Views
61
CrossRef citations to date
0
Altmetric
Research Article

Retinoid X Receptor:Vitamin D3 Receptor Heterodimers Promote Stable Preinitiation Complex Formation and Direct 1,25-Dihydroxyvitamin D3-Dependent Cell-Free Transcription

, &
Pages 1923-1937 | Received 21 Aug 1996, Accepted 18 Dec 1996, Published online: 29 Mar 2023

REFERENCES

  • Alroy, I., and L. P. Freedman. 1992. DNA binding analysis of glucocorticoid receptor specificity mutants. Nucleic Acids Res. 20:1045–1052.
  • Alroy, I., T. L. Towers, and L. P. Freedman. 1995. Transcriptional repression of the interleukin-2 gene by vitamin D3: direct inhibition of NFATp/ AP-1 complex formation by a nuclear hormone receptor. Mol. Cell. Biol. 15:5789–5799.
  • Baniahmad, A., I. Ha, D. Reinberg, S. Tsai, M. J. Tsai, and B. W. O’Malley. 1993. Interaction of human thyroid hormone receptor-b with transcription factor TFIIB may mediate target gene derepression and activation by thyroid hormone. Proc. Natl. Acad. Sci. USA 90:8832–8836.
  • Barberis, A., J. Pearlberg, N. Simkovich, S. Farrell, P. Reinagel, C. Bamdad, G. Sigal, and M. Ptashne. 1995. Contact with a component of the polymerase II holoenzyme suffices for gene activation. Cell 81:359–368.
  • Blanco, J. C., I. M. Wang, S. Y. Tsai, M. J. Tsai, B. W. O’Malley, P. W. Jurutka, M. R. Haussler, and K. Ozato. 1995. Transcription factor TFIIB and the vitamin D receptor cooperatively activate ligand-dependent transcription. Proc. Natl. Acad. Sci. USA 92:1535–1539.
  • Bourguet, W., M. Ruff, P. Chambon, H. Gronemeyer, and D. Moras. 1995. Crystal structure of the ligand-binding domain of the human nuclear receptor RXR-a. Nature 375:377–382.
  • Breen, E. C., A. J. van Wijnen, J. B. Lian, G. S. Stein, and J. L. Stein. 1994. In vivo occupancy of the vitamin D responsive element in the osteocalcingene supports vitamin D-dependent transcriptional upregulation in intact cells. Proc. Natl. Acad. Sci. USA 91:12902–12906.
  • Carlberg, C., I. Bendik, A. Wyss, E. Meier, L. J. Sturzenbecker, J. F. Grippo, and W. Hunziker. 1993. Two nuclear signalling pathways for vitamin D. Nature 361:657–660.
  • Cavailles, V., S. Dauvois, F. L’Horset, G. Lopez, S. Hoare, P. J. Kushner, and M. G. Parker. 1995. Nuclear factor RIP140 modulates transcriptional activation by the estrogen receptor. EMBO J. 14:3741–3751.
  • Chao, D. M., E. L. Gadbois, P. J. Murray, S. F. Anderson, M. S. Sonu, J. D. Parvin, and R. A. Young. 1996. A mammalian SRB protein associated with an RNA polymerase II holoenzyme. Nature 380:82–85.
  • Chen, J. D., and R. M. Evans. 1995. A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature 377:454–457.
  • Chen, J. D., K. Umesono, and R. M. Evans. 1996. SMRT isoforms mediate repression and anti-repression of nuclear receptor heterodimers. Proc. Natl. Acad. Sci. USA 93:7567–7571.
  • Chen, J.-L., L. D. Attardi, C. P. Verrijzer, K. Yokomori, and R. Tjian. 1994. Assembly of recombinant TFIID reveals differential coactivator requirements for distinct transcriptional coactivators. Cell 79:93–105.
  • Cheskis, B., and L. P. Freedman. 1994. Ligand modulates the conversion of DNA-bound vitamin D3 receptor (VDR) homodimers into VDR-retinoid X receptor heterodimers. Mol. Cell. Biol. 14:3329–3338.
  • Cheskis, B., and L. P. Freedman. 1996. Modulation of nuclear receptor interactions by ligands: kinetic analysis using surface plasmon resonance. Biochemistry 35:3309–3318.
  • Cheskis, B., B. D. Lemon, M. Uskokovic, P. T. Lomedico, and L. P. Freedman. 1995. Vitamin D3-retinoid X receptor dimerization is differentially affected by analogues of 1,25-dihydroxyvitamin D3. Mol. Endocrinol. 9:1814–1824.
  • Chi, T., P. Lieberman, K. Ellwood, and M. Carey. 1995. A general mechanism for transcriptional synergy by eukaryotic activators. Nature 377:254–257.
  • Choy, B., and M. R. Green. 1993. Eukaryotic activators function during multiple steps of preinitiation complex assembly. Nature 366:531–536.
  • Conaway, R. C., and J. W. Conaway. 1993. General initiation factors for RNA polymerase II. Annu. Rev. Biochem. 62:161–190.
  • Danielian, P. S., R. White, J. A. Lees, and M. G. Parker. 1992. Identification of a conserved region required for hormone dependent transcriptional activation by steroid hormone receptors. EMBO J. 11:1025–1033.
  • Dey, A., S. Minucci, and K. Ozato. 1994. Ligand-dependent occupancy of the retinoic acid receptor b2 promoter in vivo. Mol. Cell. Biol. 14:8191–8201.
  • Dignam, J. D., R. M. Lebovitz, and R. G. Roeder. 1983. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 11:1475–1489.
  • Dynlacht, B. D., T. Hoey, and R. Tjian. 1991. Isolation of coactivators associated with the TATA-binding protein that mediate transcriptional activation. Cell 66:563–576.
  • Eriksson, P., and O. Wrange. 1993. The glucocorticoid receptor acts as an antirepressor in receptor-dependent in vitro transcription. Eur. J. Biochem. 215:505–511.
  • Fondell, J. D., F. Brunel, K. Hisatake, and R. G. Roeder. 1996. Unliganded thyroid hormone receptor-α can target TATA-binding protein for transcriptional repression. Mol. Cell. Biol. 16:281–287.
  • Fondell, J. D., H. Ge, and R. G. Roeder. 1996. Ligand induction of a transcriptionally active thyroid hormone receptor coactivator complex. Proc. Natl. Acad. Sci. USA 93:8329–8333.
  • Fondell, J. D., A. L. Roy, and R. G. Roeder. 1993. Unliganded thyroid hormone receptor inhibits formation of a functional preinitiation complex: implications for active repression. Genes Dev. 7:1400–1410.
  • Freedman, L. P., B. F. Luisi, Z. R. Korszun, R. Basavappa, P. J. Sigler, and K. R. Yamamoto. 1988. The function and structure of the metal coordination sites within the glucocorticoid receptor DNA binding domain. Nature 334:543–546.
  • Freedman, L. P., and T. L. Towers. 1991. DNA binding properties of the vitamin D3 receptor zinc finger region. Mol. Endocrinol. 5:1815–1826.
  • Gill, R. K., and S. Christakos. 1993. Identification of sequence elements in mouse calbindin-D28 gene that confers 1,25-dihydroxyvitamin D3 and butyrate inducible responses. Proc. Natl. Acad. Sci. USA 90:2984–2988.
  • Goodrich, J. A., and R. Tjian. 1994. Transcription factors IIE and IIH and ATP hydrolysis direct promoter clearance by RNA polymerase II. Cell 77:145–156.
  • Halachmi, S., E. M. Marden, G. H. MacKay, C. Abbondanza, and M. Brown. 1994. Estrogen receptor-associated proteins: possible mediators of hormone-induced transcription. Science 264:1455–1458.
  • Hawley, D. K., and R. G. Roeder. 1985. Separation and partial characterization of three functional steps in transcription initiation by human RNA polymerase II. J. Biol. Chem. 260:8163–8172.
  • Hori, R., and M. Carey. 1994. The role of activators in assembly of RNA polymerase II transcription complexes. Curr. Opin. Genet. Dev. 4:236–244.
  • Hori, R., S. Pyo, and M. Carey. 1995. Protease footprinting reveals a surface on transcription factor TFIIB that serves as an interface for activators and coactivators. Proc. Natl. Acad. Sci. USA 92:6047–6051.
  • Horlein, A. J., A. M. Naar, T. Heinzel, J. Torchia, B. Gloss, R. Kurokawa, A. Ryan, K. Yasutomi, M. Soderstrom, C. K. Glass, and M. G. Rosenfeld. 1995. Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature 377:397–404.
  • Horwitz, K. B., T. A. Jackson, D. L. Bain, J. K. Richer, G. S. Takimoto, and L. Tung. 1996. Nuclear receptor coactivators and corepressors. Mol. Endocrinol. 10:1167–1177.
  • Ing, N. H., J. M. Beekman, S. Y. Tsai, M. J. Tsai, and B. W. O’Malley. 1992. Members of the steroid hormone receptor superfamily interact with TFIIB (S300-II). J. Biol. Chem. 267:17617–17623.
  • Inostroza, J. A., F. H. Mermelstein, I. Ha, W. S. Lane, and D. Reinberg. 1992. Dr1, a TATA-binding protein-associated phosphoprotein and inhibitor of class II gene transcription. Cell 70:477–489.
  • Kamei, Y., L. Xu, T. Heinzel, J. Torchia, R. Kurokawa, B. Gloss, S.-C. Lin, R. A. Heyman, D. W. Rose, C. K. Glass, and M. G. Rosenfeld. 1996. A CBP-integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors. Cell 85:403–414.
  • Kim, T. K., S. Hashimoto, R. J. Kelleher, P. M. Flanagan, R. D. Kornberg, M. Horikoshi, and R. G. Roeder. 1994. Effects of activation-defective TBP mutations on transcription initiation in yeast. Nature 369:252–255.
  • Kim, T. K., and R. G. Roeder. 1994. Proline-rich activator CTF1 targets the TFIIB assembly step during transcriptional activation. Proc. Natl. Acad. Sci. USA 91:4170–4174.
  • Kim, T. K., Y. Zhao, H. Ge, R. Bernstein, and R. G. Roeder. 1995. TATA- binding protein residues implicated in a functional interplay between negative cofactor NC2 (Dr1) and general factors TFIIA and TFIIB. J. Biol. Chem. 270:10976–10981.
  • Kim, Y.-J., S. Bjorkland, Y. Li, M. H. Sayre, and R. D. Kornberg. 1994. A multiprotein mediator of transcriptional activation and its interaction with the C-terminal repeat domain of RNA polymerase II. Cell 77:599–608.
  • Kingston, R. E., C. A. Bunker, and A. Imbalzano. 1996. Repression and activation by multiprotein complexes that alter chromatin structure. Genes Dev. 10:905–920.
  • Klein-Hitpass, L., S. Y. Tsai, N. L. Weigel, G. F. Allan, D. Riley, R. Rodriguez, W. T. Scrader, M.-J. Tsai, and B. W. O’Malley. 1990. The progesterone receptor stimulates cell-free transcription by enhancing the formation of a stable preinitiation complex. Cell 60:247–257.
  • Koeleske, A. J., and R. A. Young. 1994. An RNA polymerase II holoenzyme responsive to activators. Nature 368:466–469.
  • Koszewski, N. J., T. A. Reinhardt, and R. L. Horst. 1996. Vitamin D receptor homodimer interactions with the murine osteopontin response element. J. Steroid Biochem. Mol. Biol. 59:377–388.
  • Le Douarin, B., C. Zechel, J.-M. Garnier, Y. Lutz, L. Tora, B. Pierrat, D. Heery, H. Gronenmyer, P. Chambon, and R. Losson. 1995. The N-terminal part of TIF1, a putative mediator of the ligand dependent activation function (AF-2) of nuclear receptors, is fused to B-Raf in the oncogenic protein T18. EMBO J. 14:2020–2033.
  • Lee, J. I., P. H. Driggers, J. A. Medin, V. M. Nikodem, and K. Ozato. 1994. Recombinant thyroid hormone receptor and retinoid X receptor stimulate ligand dependent transcription in vitro. Proc. Natl. Acad. Sci. USA 91:1647–1651.
  • Lee, J. W., F. Ryan, J. C. Swaffield, S. A. Johnston, and D. D. Moore. 1995. Interaction of thyroid hormone receptor with a conserved transcriptional mediator. Nature 374:91–94.
  • Lemon, B. D., and L. P. Freedman. 1996. Selective effects of ligands on vitamin D3 receptor- and retinoid X receptor-mediated gene activation in vivo. Mol. Cell. Biol. 16:1006–1016.
  • Leng, X., J. Blanco, S. Y. Tsai, K. Ozato, B. W. O’Malley, and M.-J. Tsai. 1995. Mouse retinoid X receptor contains a separable ligand binding and transactivation domain in its E region. Mol. Cell. Biol. 15:255–263.
  • Lieberman, P. M., and A. J. Berk. 1994. A mechanism for TAFs in transcriptional activation: activation domain enhancement of TFIID-TFIIA- promoter DNA complex formation. Genes Dev. 8:995–1006.
  • Lin, Y. S., M. Carey, M. Ptashne, and M. R. Green. 1990. How different eukaryotic transcriptional activators can cooperate promiscuously. Nature 345:359–361.
  • Lin, Y. S., and M. R. Green. 1991. Mechanism of action of an acidic transcriptional activator in vitro. Cell 64:971–981.
  • Lin, Y. S., I. Ha, E. Maldonado, D. Reinberg, and M. R. Green. 1991. Binding of general transcription factor TFIIB to an acidic activating region. Nature 353:569–571.
  • Liu, M., and L. P. Freedman. 1994. Transcriptional synergism between the vitamin D3 receptor and other nonreceptor transcription factors. Mol. Endocrinol. 8:1593–1604.
  • Liu, M., M. H. Lee, M. Cohen, M. Bommakanti, and L. P. Freedman. 1996. Transcriptional activation of the Cdk inhibitor p21 by vitamin D3 leads to the induced differentiation of the myelomonocytic cell line U937. Genes Dev. 10:142–153.
  • Luisi, B., and L. P. Freedman. 1995. Dymer, dymer binding tight. Nature 375:359–360.
  • Ma, D., I. Olave, A. Merino, and D. Reinberg. 1996. Separation of the transcriptional coactivator and anti-repression functions of transcription factor IIA. Proc. Natl. Acad. Sci. USA 93:6583–6588.
  • MacDonald, P. N., D. R. Dowd, S. Nakajama, M. A. Galligan, M. C. Reeder, C. A. Haussler, K. Ozato, and M. R. Haussler. 1993. Retinoid X receptors stimulate and 9-cis retinoic acid inhibits 1,25-dihydroxvitamin D3-activated expression of the rat osteocalcin gene. Mol. Cell. Biol. 13:5907–5917.
  • MacDonald, P. N., D. R. Sherman, D. R. Dowd, S. C. Jefcoat, Jr., and R. K. DeLisle. 1995. The vitamin D receptor interacts with general transcription factor IIB. J. Biol. Chem. 270:4748–4752.
  • Maldonado, E., I. Ha, P. Cortes, L. Weis, and D. Reinberg. 1990. Factors involved in specific transcription by mammalian RNA polymerase II: role of transcription factors IIA, IID, and IIB during formation of a transcription- competent complex. Mol. Cell. Biol. 10:6335–6347.
  • Maldonado, E., R. Shiekhattar, M. Sheldon, H. Cho, R. Drapkin, P. Rickert, E. Lees, C. W. Anderson, S. Linn, and D. Reinberg. 1996. A human RNA polymerase II complex associated with SRB and DNA-repair proteins. Nature 381:86–89.
  • Malik, S., and S. K. Karathanasis. 1996. TFIIB-directed transcriptional activation by the orphan nuclear receptor hepatocyte nuclear factor 4. Mol. Cell. Biol. 16:1824–1831.
  • Malik, S., and S. Karathanasis. 1995. Transcriptional activation by the orphan nuclear receptor ARP-1. Nucleic Acids Res. 23:1536–1543.
  • Mangelsdorf, D. J., C. Thummel, M. Beato, P. Herrlich, G. Schutz, K. Umesono, B. Blumberg, P. Kastner, M. Mark, P. Chambon, and R. M. Evans. 1995. The nuclear receptor superfamily: the second decade. Cell 83:835–839.
  • Meisterernst, M., A. L. Roy, H. M. Lieu, and R. G. Roeder. 1991. Activation of class II gene transcription by regulatory factors is potentiated by a novel activity. Cell 66:981–993.
  • Mermelstein, F., K. Yeung, J. Cao, J. A. Inostroza, H. Erjument-Bromage, K. Eagelson, D. Landsman, P. Levitt, P. Tempst, and D. Reinberg. 1996. Requirement of a corepressor for Dr1-mediated repression of transcription. Genes Dev. 10:1033–1048.
  • Nakshatri, H., P. Nakshatri, and R. A. Currie. 1995. Interaction of Oct-1 with TFIIB. Implications for a novel response elicited through the proximal octamer site of the lipoprotein lipase promoter. J. Biol. Chem. 270:19613–19623.
  • Noda, M., R. L. Vogel, A. M. Craig, J. Prahl, H. F. DeLuca, and D. T. Denhardt. 1990. Identification of a DNA sequence responsible for binding of the 1,25-dihydroxyvitamin D3 enhancement of mouse secreted phosphoprotein 1 (Spp- 1 or osteopontin) gene expression. Proc. Natl. Acad. Sci. USA 87:9995–9999.
  • Onate, S. A., S. Y. Tsai, M. J. Tsai, and B. W. O’Malley. 1995. Sequence and characterization of a co-activator for the steroid hormone receptor superfamily. Science 270:1354–1357.
  • Ossipow, V., J.-P. Tassan, E. A. Nigg, and U. Schibler. 1996. A mammalian RNA polymerase II holoenzyme containing all components required for promoter-specific transcription initiation. Cell 83:137–146.
  • Ozono, K., J. Liao, S. A. Kerner, R. A. Scott, and J. W. Pike. 1990. The vitamin D responsive element in the human osteocalcin gene. J. Biol. Chem. 265:21881–21888.
  • Paranjape, S. M., A. Krumm, and J. T. Kadonaga. 1995. HMG17 is a chromatin-specific transcriptional co-activator that increases the efficiency of transcription initiation. Genes Dev. 9:1978–1991.
  • Pazin, M. J., R. T. Kamakaka, and J. T. Kadonaga. 1994. ATP-dependent nucleosome reconfiguration and transcriptional activation from preassembled chromatin templates. Science 266:2007–2011.
  • Pognonec, P., and R. G. Roeder. 1991. Recombinant 43-kDa USF binds to DNA and activates transcription in a manner indistinguishable from that of natural 43/44-kDa USF. Mol. Cell. Biol. 11:5125–5136.
  • Rastinejad, F., T. Perlmann, R. M. Evans, and P. B. Sigler. 1995. Structural determinants of nuclear receptor assembly on DNA direct repeats. Nature 375:203–211.
  • Reinberg, D., M. Horikoshi, and R. G. Roeder. 1987. Factors involved in specific transcription in mammalian RNA polymerase II. Functional analysis of initiation factors IIA and IID and identification of a new factor operating at sequences downstream of the initiation site. J. Biol. Chem. 262:3322–3330.
  • Renaud, J.-P., N. Rochel, M. Ruff, V. Vivat, P. Chambon, H. Gronemyer, and D. Moras. 1995. Crystal structure of the RAR-g ligand-binding domain bound to all-trans retinoic acid. Nature 378:681–689.
  • Roberts, S. G., and M. R. Green. 1994. Activator-induced conformational change in general transcription factor TFIIB. Nature 371:717–720.
  • Roberts, S. G., I. Ha, E. Maldonado, D. Reinberg, and M. R. Green. 1993. Interaction between an acidic activator and transcription factor TFIIB is required for transcriptional activation. Nature 363:741–744.
  • Roeder, R. G. 1991. The complexities of eukaryotic transcription initiation: regulation of pre-initiation complex assembly. Trends Biol. Sci. 16:402–408.
  • Rubin, D. M., O. Coux, I. Wefes, C. Hengartner, R. A. Young, A. L. Goldberg, and D. Finley. 1996. Identification of the gal4 suppressor Sug1 as a component of the yeast 26S proteosome. Nature 379:655–657.
  • Sauer, F., S. K. Hansen, and R. Tjian. 1995. Multiple TAFIIs directing synergistic activation of transcription. Science 270:1783–1788.
  • Schmitt, J., and H. G. Stunnenberg. 1993. The glucocorticoid receptor hormone binding domain mediates transcriptional activation in the absence of ligand. Nucleic Acids Res. 21:2673–2681.
  • Schulman, I. G., D. Chakravarti, H. Juguilon, A. Romo, and R. M. Evans. 1995. Interactions between the retinoid X receptor and a conserved region of the TATA-binding protein mediate hormone-dependent transactivation. Proc. Natl. Acad. Sci. USA 92:8288–8292.
  • Sheridan, P. L., C. T. Sheline, K. Cannon, M. L. Voz, M. A. Pazin, J. T. Kadonaga, and K. A. Jones. 1995. Activation of the HIV-1 enhancer by the LEF-1 HMG protein on nucleosome-assembled DNA in vitro. Genes Dev. 9:2090–2104.
  • Shykind, B. M., J. Kim, and P. A. Sharp. 1995. Activation of the TFIID- TFIIA complex with HMG-2. Genes Dev. 9:1354–1365.
  • Struhl, K. 1996. Chromatin structure and RNA polymerase II connection: implications for transcription. Cell 84:179–182.
  • Thompson, C. M., and R. A. Young. 1995. General requirement for RNA polymerase II holoenzymes in vivo. Proc. Natl. Acad. Sci. USA 92:4587–4590.
  • Thut, C. J., J. L. Chen, R. Klemm, and R. Tjian. 1995. p53 transcriptional activation mediated by coactivators TAFII40 and TAFII60. Science 267:100–104.
  • Tjian, R., and T. Maniatis. 1994. Transcriptional activation: a complex puzzle with few easy pieces. Cell 77:5–8.
  • Tong, G.-X., M. Jeyakumar, M. R. Tanen, and M. K. Bagchi. 1996. Transcriptional silencing by unliganded thyroid hormone receptor-β requires a soluble corepressor that interacts with the ligand binding domain of the receptor. Mol. Cell. Biol. 16:1909–1920.
  • Towers, T. L., B. L. Luisi, A. Asianov, and L. P. Freedman. 1993. DNA target selectivity by the vitamin D3 receptor: mechanism for dimer binding to an asymmetric repeat element. Proc. Natl. Acad. Sci. USA 90:6310–6314.
  • Truss, M., J. Bartsch, A. Schelbert, R. J. G. Hache, and M. Beato. 1995. Hormone induces binding of receptors and transcription factors to a rearranged nucleosome on the MMTV promoter in vivo. EMBO J. 14:1737–1751.
  • Tsukiyama, T., C. Daniel, J. Tamkun, and C. Wu. 1995. ISWI, a member of the SWI2/SNF2 ATPase family, encodes the 140 kDa subunit of the nucleosome remodeling factor. Cell 83:1021–1026.
  • Tsukiyama, T., and C. Wu. 1995. Purification and properties of an ATP- dependent nucleosome remodeling factor. Cell 83:1011–1020.
  • Valcarcel, R., H. Holz, C. G. Jimenez, D. Barettino, and H. G. Stunnenberg. 1994. Retinoid-dependent in vitro transcription mediated by the RXR/ RAR heterodimer. Genes Dev. 8:3068–3079.
  • Voegel, J. J., M. J. S. Heine, C. Zechel, P. Chambon, and H. Gronemyer. 1996. TIF2, a 160 kDa transcriptional mediator for the ligand-dependent activation function AF-2 of nuclear receptors. EMBO J. 15:3667–3675.
  • vom Baur, E., C. Zechel, D. Heery, M. J. Heine, J. M. Garnier, V. Vivat, B. Le Douarin, H. Gronemeyer, P. Chambon, and R. Losson. 1996. Differential ligand-dependent interactions between the AF-2 activating domain of nuclear receptors and the putative transcriptional intermediary factors mSUG1 and TIF1. EMBO J. 15:110–124.
  • Wagner, R. L., J. W. Apriletti, M. E. McGrath, B. L. West, J. D. Baxter, and R. J. Fletterick. 1995. A structural role for hormone in the thyroid hormone receptor. Nature 378:690–697.
  • Wang, W., M. Carey, and J. D. Gralla. 1992. Polymerase II promoter activation: closed complex formation and ATP-driven start-site opening. Science 255:450–453.
  • Wang, W., J. D. Gralla, and M. Carey. 1992. The acidic activator Gal-4AH can stimulate polymerase II transcription by promoting assembly of a closed complex requiring TFIID and TFIIA. Genes Dev. 6:1716–1727.
  • Wilson, C. J., D. M. Chao, A. N. Imbalzano, G. R. Schnitzler, R. E. Kingston, and R. A. Young. 1996. RNA polymerase II holoenzyme contains SWI/SNF regulators involved in chromatin remodeling. Cell 84:235–244.
  • Yankulov, K., J. Blau, T. Purton, S. Roberts, and D. Bentley. 1994. Transcriptional elongation by RNA polymerase II is stimulated by transactivators. Cell 77:749–759.
  • Yokomori, K., M. P. Zeidler, J.-L. Chen, C. P. Verrijzer, M. Mlodzik, and R. Tjian. 1994. Drosophila TFIIA directs cooperative DNA binding with TBP and mediates transcriptional activation. Genes Dev. 8:2313–2323.
  • Yoshinaga, S. K., C. L. Peterson, I. Herskowitz, and K. R. Yamamoto. 1992. Roles of SWI1, SWI2 and SWI3 proteins for transcriptional enhancement by steroid receptors. Science 258:1598–1604.
  • Zawel, L., and D. Reinberg. 1992. Advances in RNA polymerase II transcription. Curr. Opin. Cell. Biol. 4:488–495.
  • Zhang, X. K., J. Lehmann, B. Hoffmann, M. I. Dawson, J. Cameron, G. Graupner, T. Hermann, P. Tran, and M. Pfahl. 1992. Homodimer formation of retinoid X receptor induced by 9-cis retinoic acid. Nature 358:587–591.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.