1
Views
21
CrossRef citations to date
0
Altmetric
Research Article

Identification of a Competitive Translation Determinant in the 3′ Untranslated Region of Alfalfa Mosaic Virus Coat Protein mRNA

, , &
Pages 2005-2013 | Received 08 Oct 1996, Accepted 22 Dec 1996, Published online: 29 Mar 2023

REFERENCES

  • Ansel-McKinney, P., and L. Gehrke. Unpublished data.
  • Ayuso-Parilla, M., E. C. Henshaw, and C. A. Hirsch. 1973. The ribosome cycle in mammalian protein synthesis. III. Evidence that the nonribosomal proteins bound to the native smaller subunit are initiation factors. J. Biol. Chem. 248:4386–4393.
  • Brendler, T., T. Godefroy-Colburn, R. D. Carill, and R. E. Thach. 1981. The role of mRNA competition in regulation translation. II. Development of a quantitative in vitro assay. J. Biol. Chem. 256:11747–11754.
  • Browning, K., L. Fletcher, and J. Ravel. 1988. Evidence that the requirements for ATP and wheat germ initiation factors 4A and 4F are affected by a region of satellite tobacco necrosis virus RNA that is 3′ to the ribosomal binding site. J. Biol. Chem. 263:8380–8383.
  • Browning, K. S., S. R. Lax, J. Humphreys, J. M. Ravel, S. A. Jobling, and L. Gehrke. 1988. Evidence that the 5′-untranslated leader of mRNA affects the requirement for wheat germ initiation factors 4A, 4F, and 4G. J. Biol. Chem. 263:9630–9634.
  • Cavener, D. R., and S. C. Ray. 1991. Eukaryotic start and stop translation sites. Nucleic Acids Res. 19:3185–3192.
  • Ch’ng, J. L. C., D. L. Shoemaker, P. Shimmel, and E. W. Holmes. 1990. Reversal of creatine kinase translational repression by 3′ untranslated sequences. Science 248:1003–1006.
  • Danthinne, X., J. Seurinck, F. Meulewaeter, M. Van Montagu, and M. Cornelissen. 1993. The 3′ untranslated region of satellite tobacco necrosis virus RNA stimulates translation in vitro. Mol. Cell. Biol. 13:3340–3349.
  • Davidson, E. H. 1976. Gene activity in early development, p. 85–136. Academic Press, Inc., New York, N.Y.
  • De Sauvage, F., V. Kruys, O. Marinx, G. Huez, and J. N. Octave. 1992. Alternative polyadenylation of the amyloid protein precursor messenger RNA regulates translation. EMBO J. 11:3099–3103.
  • Dickey, L. F., Y. H. Wang, G. E. Shull, I. A. Wortman, and E. C. Theil. 1988. The importance of the 3′-untranslated region in the translational control of ferritin. J. Biol. Chem. 263:3071–3074.
  • Fletcher, L., S. Corbin, K. Browning, and J. Ravel. 1990. The absence of a m7G cap on β-globin mRNA and alfalfa mosaic virus RNA 4 increases the amounts of initiation factor 4F required for translation. J. Biol. Chem. 265:19582–19587.
  • Galili, G., E. Kawata, L. Smith, and B. Larkin. 1988. Role of the 3′-poly(A) sequence in translational regulation of mRNAs in Xenopus laevis oocytes. J. Biol. Chem. 263:5764–5770.
  • Gallie, D., and V. Walbot. 1990. RNA pseudoknot domain of tobacco mosaic virus can functionally substitute for a poly(A) tail in plant and animal cells. Genes Dev. 4:1149–1157.
  • Gallie, D. R. 1991. The cap and poly(A) tail function synergistically to regulate messenger RNA translational efficiency. Genes Dev. 5:2108–2116.
  • Gallie, D. R., J. N. Feder, R. T. Schimke, and V. Walbot. 1991. Functional analysis of the tobacco mosaic virus tRNA-like structure in cytoplasmic gene regulation. Nucleic Acids Res. 19:5031–5036.
  • Gallie, D. R., and M. Kobayashi. 1994. The role of the 3′-untranslated region of non-polyadenylated plant viral mRNAs in regulating translational efficiency. Gene 142:159–165.
  • Gallie, D. R., D. E. Sleat, J. W. Watts, P. C. Turner, and T. M. A. Wilson. 1987. The 5′-leader sequence of tobacco mosaic virus RNA enhances the expression of foreign gene transcripts in vitro and in vivo. Nucleic Acids Res. 15:3257–3273.
  • Gallie, D. R., D. E. Sleat, J. W. Watts, P. C. Turner, and T. M. A. Wilson. 1987. A comparison of eukaryotic viral 5′-leader sequences as enhancers of mRNA expression in vivo. Nucleic Acids Res. 15:8693–8711.
  • Gallie, D. R., and R. Tanguay. 1994. Poly(A) binds to initiation factors and increases cap-dependent translation in vitro. J. Biol. Chem. 269:17166–17173.
  • Gehrke, L., P. E. Auron, G. J. Quigley, A. Rich, and N. Sonenberg. 1983. 5′-conformation of capped alfalfa mosaic virus ribonucleic acid 4 may reflect its independence of the cap structure or of cap-binding protein for efficient translation. Biochemistry 22:5157–5164.
  • Gerlinger, P., E. Mohier, M. A. Le Meur, and L. Hirth. 1977. Monocistronic translation of alfalfa mosaic virus RNAs. Nucleic Acids Res. 4:813–826.
  • Godefroy-Colburn, T., C. Thivent, and L. Pinck. 1985. Translational discrimination between the four RNAs of alfalfa mosaic virus: a quantitative evaluation. Eur. J. Biochem. 147:541–548.
  • Goodwin, E. B., P. G. Okkema, T. C. Evans, and J. Kimble. 1993. Translational regulation of tra-2 by its 3′ untranslated region controls sexual identity in C. elegans. Cell 75:329–339.
  • Grant, C. M., and A. G. Hinnebusch. 1994. Effect of sequence context at stop codons on efficiency of reinitiation in GCN4 translational control. Mol. Cell. Biol. 14:606–618.
  • Hann, L. E. 1994. The roles of 5′ and 3′ untranslated regions in alfalfa mosaic virus RNA 4 translation. Ph.D. thesis. Harvard University, Boston, Mass.
  • Hann, L. E., and L. Gehrke. 1995. mRNAs containing the unstructured 5′ leader sequence of alfalfa mosaic virus RNA 4 translate inefficiently in lysates from poliovirus-infected HeLa cells. J. Virol. 69:4986–4993.
  • Hann, L. E., and L. Gehrke. Unpublished data.
  • Hehl, A., E. Vassella, R. Braun, and I. Roditi. 1994. A conserved stem loop structure in the 3′ untranslated region of procyclin messenger RNAs regulates expression in Trypanosoma brucei. Proc. Natl. Acad. Sci. USA 91:370–374.
  • Herson, D., A. Schmidt, S. Seal, A. Marcus, and L. van Vloten-Doting. 1979. Competitive mRNA translation in an in vitro system from wheat germ. J. Biol. Chem. 254:8245–8249.
  • Hirsch, C. A., M. A. Cox, W. J. W. van Venrooij, and E. C. Henshaw. 1973. The ribosome cycle in mammalian protein synthesis. II. Association of the native smaller ribosomal subunit with protein factors. J. Biol. Chem. 248:4377–4385.
  • Houwing, C. J., and E. M. J. Jaspars. 1978. Coat protein binds to the 3′-terminal part of RNA 4 of alfalfa mosaic virus. Biochemistry 17:2927–2933.
  • Huez, G., Y. Cleuter, C. Bruck, L. Van Vloten-Doting, R. Golbach, and B. Verduin. 1983. Translational stability of plant viral RNAs microinjected into living cells. Influence of a 3′-poly(A) segment. Eur. J. Biochem. 130:205–209.
  • Ikonen, E., I. Ulmanen, and L. Peltonen. 1992. Deletion of the 3′-untrans- lated region of aspartylglucosaminidase messenger RNA results in a lysosomal accumulation disease. J. Biol. Chem. 267:8715–8718.
  • Jackson, R. J., and N. Standart. 1990. Do the poly(A) tail and 3′ untranslated region control messenger RNA translation? Cell 62:15–24.
  • Jagus, R., A. W. F. Safer, and B. Safer. 1981. The regulation of initiation of mammalian protein synthesis. Prog. Nucleic Acid Res. Mol. Biol. 25:127–185.
  • Jalanko, A., T. Manninen, and L. Peltonen. 1995. Deletion of the C-terminal end of aspartylglucosaminidase resulting in a lysosomal accumulation disease: evidence for a unique genomic rearrangement. Hum. Mol. Gen. 4:435–441.
  • Jobling, S. A., P. E. Auron, G. Gurka, A. C. Webb, B. McDonald, L. J. Rosenwasser, and L. Gehrke. 1988. Biological activity and receptor binding of human prointerleukin-1β and subpeptides. J. Biol. Chem. 263:16372–16378.
  • Jobling, S. A., and L. Gehrke. 1987. Enhanced translation of chimaeric messenger RNAs containing a plant viral untranslated leader sequence. Nature 325:622–625.
  • King, P. H., T. D. Levine, R. T. Fremeau, and J. D. Keene. 1994. Mammalian homologs of Drosophila ELAV localized to a neuronal subset can bind in vitro to the 3′ UTR of mRNA encoding the Id transcriptional repressor. J. Neurosci. 14:1943–1952.
  • Kleene, K. C. 1989. Poly(A) shortening accompanies the activation of translation of five mRNAs during spermiogenesis in the mouse. Development 106:367–373.
  • Kozak, M. 1983. Comparison of initiation of protein synthesis in procaryotes, eucaryotes, and organelles. Microbiol. Rev. 47:1–45.
  • Kozak, M. 1986. Point mutations define a sequence flanking the AUG initiation codon that modulates translation by eukaryotic ribosomes. Cell 44:283–292.
  • Kozak, M. 1986. Regulation of protein synthesis in virus-infected animal cells. Adv. Virus Res. 31:229–292.
  • Kruys, V., M. Wathelet, P. Poupart, R. Conteras, W. Fiers, J. Content, and G. Huez. 1987. The 3′ untranslated region of the human interferon-β mRNA has an inhibitory effect on translation. Proc. Natl. Acad. Sci. USA 84:6030–6034.
  • Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685.
  • Laskey, R. A., A. D. Mills, J. B. Gurdon, and G. A. Partington. 1977. Protein synthesis in oocytes of Xenopus laevis is not regulated by the supply of messenger RNA. Cell 11:345–351.
  • Leathers, V., R. Tanguay, M. Kobayashi, and D. R. Gallie. 1993. A phylo- genetically conserved sequence within viral 3′ untranslated RNA pseudoknots regulates translation. Mol. Cell. Biol. 13:5331–5347.
  • Lee, R. C., R. L. Feinbaum, and V. Ambros. 1993. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854.
  • Lodish, H. F. 1976. Translational control of protein synthesis. Annu. Rev. Biochem. 45:39–72.
  • Loesch-Fries, L. S., N. P. Jarvis, K. J. Krahn, S. E. Nelson, and T. C. Hall. 1985. Expression of alfalfa mosaic virus RNA 4 cDNA transcripts in vitro and in vivo. Virology 146:177–187.
  • Mans, R. J., and G. D. Novelli. 1961. Measurement of the incorporation of radioactive amino acids into protein by a filter paper disc method. Arch. Biochem. Biophys. 94:48–53.
  • Miller, P. F., and A. G. Hinnebusch. 1990. cis-acting sequences involved in the translational control of GCN4 expression. Biochim. Biophys. Acta 1050:151–154.
  • Mohier, E., L. Hirth, M. A. Le Meur, and P. Gerlinger. 1976. Analysis of alfalfa mosaic virus 17S RNA translational products. Virology 71:615.
  • Munroe, D., and A. Jacobson. 1990. mRNA poly(A) tail, a 3′ enhancer of translational initiation. Mol. Cell. Biol. 10:3441–3455.
  • Ostareck-Lederer, A., D. H. Ostareck, N. Standart, and B. J. Thiele. 1994. Translation of 15-lipoxygenase messenger RNA is inhibited by a protein that binds to a repeated sequence in the 3′ untranslated region. EMBO J. 13:1476–1481.
  • Palatnik, C., C. Wilkins, and M. Jacobson. 1984. Translational control during early Dictyostelium development: possible involvement of poly(A) sequences. Cell 36:1017–1025.
  • Pelletier, J., and N. Sonenberg. 1985. Insertion mutagenesis to increase secondary structure within the 5′ noncoding regions of a eukaryotic mRNA reduces translational efficiency. Cell 40:515–526.
  • Purvis, I. J., A. J. E. Bettany, L. Loughlin, and A. J. P. Brown. 1987. The effects of alterations within the 3′ untranslated region of the pyruvate kinase messenger RNA upon its stability and translation in Saccharomyces cerevi- siae. Nucleic Acids Res. 15:7951–7962.
  • Ray, B. K., T. G. Brendler, S. Adya, S. Daniels-McQueen, J. K. Miller, J.W. B. Hershey, J. A. Grifo, W. C. Merrick, and R. E. Thach. 1983. Role of mRNA competition in regulating translation: further characterization of mRNA discriminatory initiation factors. Proc. Natl. Acad. Sci. USA 80:663–667.
  • Richter, J. D., and L. D. Smith. 1981. Differential capacity for translation and lack of competition between mRNAs that segregate to free and membranebound polysomes. Cell 27:183–191.
  • Rosenthal, E. T., T. Hunt, and J. V. Ruderman. 1980. Selective translation of mRNA controls the pattern of protein synthesis during early development of the surf clam, Spisula solidissima. Cell 20:487–494.
  • Rosenthal, E. T., T. R. Tansey, and J. V. Ruderman. 1983. Sequence-specific adenylations and deadenylations accompany changes in the translation of maternal messenger RNA after fertilization of Spisula oocytes. J. Mol. Biol. 166:309–327.
  • Rutgers, A. S. 1977. In vitro and in vivo translation of the RNAs of alfalfa mosaic virus. Ph.D. thesis. University of Leiden, Leiden, The Netherlands.
  • Ryabova, L. A., A. F. Torgashov, O. V. Kurnasov, M. G. Bubunenko, and A. S. Spirin. 1993. The 3′-terminal untranslated region of alfalfa mosaic virus RNA-4 facilitates the RNA entry into translation in a cell-free system. FEBS Lett. 326:264–266.
  • Sachs, A. B., and R. W. Davies. 1989. The poly(A) binding protein is required for poly(A) shortening and 60S ribosomal subunit-dependent translation initiation. Cell 58:857–867.
  • Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Sonenberg, N. 1987. Regulation of translation by poliovirus. Adv. Virus Res. 33:175–204.
  • Standart, N., and M. Dale. 1993. Regulated polyadenylation of clam maternal mRNAs in vitro. Dev. Genet. 14:492–499.
  • Sun, J. H., D. R. Pilch, and W. F. Marzluff. 1992. The histone messenger RNA 3′ end is required for localization of histone messenger RNA to polyribosomes. Nucleic Acids Res. 20:6057–6066.
  • Tanguay, R. L., and D. R. Gallie. 1996. Translational efficiency is regulated by the length of the 3′ untranslated region. Mol. Cell. Biol. 16:146–156.
  • Timmer, R. T., L. A. Benkowski, D. Schodin, S. R. Lax, A. M. Metz, J. M. Ravel, and K. S. Browning. 1993. The 5′ and 3′ untranslated regions of satellite tobacco necrosis virus RNA affect translational efficiency and dependence on a 5′ cap structure. J. Biol. Chem. 268:9504–9510.
  • Timmer, R. T., S. R. Lax, D. L. Hughes, W. C. Merrick, J. M. Ravel, and K. S. Browning. 1993. Characterization of wheat germ protein synthesis initiation factor-eIF-4C and comparison of eIF-4C from wheat germ and rabbit reticulocytes. J. Biol. Chem. 268:24863–24867.
  • Vallette, F., E. Mege, A. Reiss, and M. Adesnik. 1989. Construction of mutant and chimeric genes using the polymerase chain reaction. Nucleic Acids Res. 17:723–733.
  • van Vloten-Doting, L., and E. M. J. Jaspars. 1977. Plant covirus systems: three component systems, p. 1–53. In H. Franenkel-Conrat and R. Wagner (ed.), Comprehensive virology. Plenum Press, Inc., New York, N.Y.
  • van Vloten-Doting, L., and L. Neeleman. 1982. Translation of plant virus RNAs, p. 337–367. In B. Parthier and D. Boulter (ed.), Encyclopedia of plant physiology (new series), vol. 14B. Springer-Verlag KG, Berlin, Germany.
  • Villa-Komaroff, L., M. McDowell, D. Baltimore, and H. Lodish. 1974. Translation of reovirus mRNA, poliovirus RNA, and bacteriophage Qβ RNA in cell-free extracts of mammalian cells. Methods Enzymol. 30:709–721.
  • Walden, W. E., T. Godefroy-Colburn, and R. E. Thach. 1981. The role of mRNA competition in regulation translation. I. Demonstration of competition in vivo. J. Biol. Chem. 256:11739–11746.
  • Wickens, M. 1993. Messenger RNA—springtime in the desert. Nature 363:305–306.
  • Wightman, B., I. Ha, and G. Ruvkun. 1993. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75:855–862.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.