20
Views
227
CrossRef citations to date
0
Altmetric
Research Article

Repression of the Heat Shock Factor 1 Transcriptional Activation Domain Is Modulated by Constitutive Phosphorylation

&
Pages 2107-2115 | Received 06 Aug 1996, Accepted 08 Jan 1997, Published online: 29 Mar 2023

REFERENCES

  • Abravaya, K., B. Phillips, and R. I. Morimoto. 1991. Attenuation of the heat shock response in HeLa cells is mediated by the release of bound heat shock transcription factor and is modulated by changes in growth and in heat shock temperatures. Genes Dev. 5:2117–2127.
  • Alessi, D. R., N. Gomez, G. Moorhead, T. Lewis, S. M. Keyse, and P. Cohen. 1995. Inactivation of p42 MAP kinase by protein phosphatase 2A and a protein tyrosine phosphatase, but not CL100, in various cell lines. Curr. Biol. 5:283–295.
  • Ausubel, F. M., R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl (ed.). 1989. Current protocols in molecular biology. John Wiley & Sons, Inc., New York, N.Y.
  • Baler, R., G. Dahl, and R. Voellmy. 1993. Activation of human heat shock genes is accompanied by oligomerization, modification, and rapid translocation of heat shock transcription factor HSF1. Mol. Cell. Biol. 13:2486–2496.
  • Boyle, W. J., P. van der Geer, and T. Hunter. 1991. Phosphopeptide mapping and phosphoamino acid analysis by two-dimensional separation on thin-layer cellulose plates. Methods Enzymol. 201:110–149.
  • Chen, F., M. Torres, and R. F. Duncan. 1995. Activation of mitogen-activated protein kinase by heat shock treatment in Drosophila. Biochem. J. 312:341–349.
  • Chu, B., F. Soncin, B. D. Price, M. A. Stevenson, and S. K. Calderwood. 1996. Sequential phosphorylation by mitogen-activated protein kinase and glycogen synthase kinase 3 represses transcriptional activation by heat shock factor 1. J. Biol. Chem. 271:30847–30857.
  • Clos, J., J. T. Westwood, P. B. Becker, S. Wilson, K. Lambert, and C. Wu. 1990. Molecular cloning and expression of a hexameric Drosophila heat shock factor subject to negative regulation. Cell 63:1085–1097.
  • Cornelius, G., and M. Engel. 1995. Stress causes induction of MAP kinase- specific phosphatase and rapid repression of MAP kinase activity in Drosophila. Cell. Signalling 7:611–615.
  • Cotto, J. J., M. P. Kline, and R. I. Morimoto. 1996. Activation of heat shock factor 1 DNA binding precedes stress-induced serine phosphorylation. J. Biol. Chem. 271:3355–3358.
  • Dubois, M. F., and O. Bensaude. 1993. MAP kinase activation during heat shock in quiescent and exponentially growing mammalian cells. FEBS Lett. 324:191–195.
  • Fukunaga, R., and T. Hunter. Unpublished data.
  • Green, M., T. J. Schuetz, E. K. Sullivan, and R. E. Kingston. 1995. A heat shock-responsive domain of human HSF1 that regulates transcription activation domain function. Mol. Cell. Biol. 15:3354–3362.
  • Gunning, P., P. Ponte, H. Okayama, J. Engel, H. Blau, and L. Kedes. 1983. Isolation and characterization of full-length cDNA clones for human alpha-, beta-, and gamma-actin mRNAs: skeletal but not cytoplasmic actins have an amino-terminal cysteine that is subsequently removed. Mol. Cell. Biol. 3:787–795.
  • Hoj, A., and B. K. Jakobsen. 1994. A short element required for turning off heat shock transcription factor: evidence that phosphorylation enhances deactivation. EMBO J. 13:2617–2624.
  • Hunter, T., and M. Karin. 1992. The regulation of transcription by phosphorylation. Cell 70:375–387.
  • Jackson, S. P. 1992. Regulating transcription factor activity by phosphorylation. Trends Cell. Biol. 2:104–108.
  • Jurivich, D. A., L. Sistonen, R. A. Kroes, and R. I. Morimoto. 1992. Effect of sodium salicylate on the human heat shock response. Science 255:1243–1245.
  • Jurivich, D. A., L. Sistonen, K. D. Sarge, and R. I. Morimoto. 1994. Arachidonate is a potent modulator of human heat shock gene transcription. Proc. Natl. Acad. Sci. USA 91:2280–2284.
  • Jurivich, D. A., C. Pachetti, L. Qiu, and J. F. Welk. 1996. Salicylate triggers heat shock factor differently than heat. J. Biol. Chem. 270:24489–24495.
  • Kamada, Y., U. S. Jung, J. Piotrowski, and D. E. Levin. 1995. The protein kinase C-activated MAP kinase pathway of Saccharomyces cerevisiae mediates a novel aspect of the heat shock response. Genes Dev. 9:1559–1571.
  • Karin, M. 1994. Signal transduction from the cell surface to the nucleus through the phosphorylation of transcription factors. Curr. Opin. Cell. Biol. 6:415–424.
  • Knauf, U., E. M. Newton, J. Kyriakis, and R. E. Kingston. 1996. Repression of human heat shock factor 1 activity at control temperature by phosphorylation. Genes Dev. 10:2782–2793.
  • Kroeger, P. E., K. D. Sarge, and R. I. Morimoto. 1993. Mouse heat shock transcription factors 1 and 2 prefer a trimeric binding site but interact differently with the HSP70 heat shock element. Mol. Cell. Biol. 13:3370–3383.
  • Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685.
  • Larson, J. S., T. J. Schuetz, and R. E. Kingston. 1988. Activation in vitro of sequence-specific DNA binding by a human regulatory factor. Nature 335:372–375.
  • Lee, B. S., J. Chen, C. Angelidis, D. A. Jurivich, and R. I. Morimoto. 1995. Pharmacological modulation of heat shock factor 1 by anti-inflammatory drugs results in protection against stress-induced cellular damage. Proc. Natl. Acad. Sci. USA 92:7207–7211.
  • Lewis, T., L. A. Groom, A. A. Sneddon, C. Smythe, and S. M. Keyse. 1995. XCL100, an inducible nuclear MAP kinase phosphatase from Xenopus laevis: its role in MAP kinase inactivation in differentiated cells and its expression during early development. J. Cell Sci. 108:2885–2896.
  • Lis, J. T., and C. Wu. 1993. Protein traffic on the heat shock promoter: parking, stalling, and trucking along. Cell 74:1–4.
  • Mivechi, N. F., and A. J. Giaccia. 1995. Mitogen-activated protein kinase acts as a negative regulator of the heat shock response in NIH3T3 cells. Cancer Res. 55:5512–5519.
  • Morimoto, R. I. 1993. Cells in stress: transcriptional activation of heat shock genes. Science 259:1409–1410.
  • Morimoto, R. I., D. A. Jurivich, P. E. Kroeger, S. K. Mathur, S. P. Murphy, A. Nakai, K. D. Sarge, K. Abravaya, and L. T. Sistonen. 1994. Regulation of heat shock gene transcription by a family of heat shock factors, p. 417–456. In R. I. Morimoto, A. Tissieres, and C. Georgopoulos (ed.), The biology of heat shock proteins and molecular chaperones. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Mosser, D. D., N. G. Theodorakis, and R. I. Morimoto. 1988. Coordinate changes in heat shock element-binding activity and Hsp70 gene transcription rates in human cells. Mol. Cell. Biol. 8:4736–4744.
  • Nakai, A., and R. I. Morimoto. 1993. Characterization of a novel chicken heat shock transcription factor, heat shock factor 3, suggests a new regulatory pathway. Mol. Cell. Biol. 13:1983–1997.
  • Newton, E. M., U. Knauf, M. Green, and R. E. Kingston. 1996. The regulatory domain of human heat shock factor 1 is sufficient to sense heat stress. Mol. Cell. Biol. 16:839–846.
  • O’Brien, T., and J. T. Lis. 1993. Rapid changes in Drosophila transcription after an instantaneous heat shock. Mol. Cell. Biol. 13:3456–3463.
  • Rabindran, S. K., G. Giorgi, J. Clos, and C. Wu. 1991. Molecular cloning and expression of a human heat shock factor, HSF1. Proc. Natl. Acad. Sci. USA 88:6906–6910.
  • Rabindran, S. K., R. I. Haroun, J. Clos, J. Wisniewski, and C. Wu. 1993. Regulation of heat shock factor trimer formation: role of a conserved leucine zipper. Science 259:230–234.
  • Sarge, K. D., S. P. Murphy, and R. I. Morimoto. 1993. Activation of heat shock gene transcription by heat shock factor 1 involves oligomerization, acquisition of DNA-binding activity, and nuclear localization and can occur in the absence of stress. Mol. Cell. Biol. 13:1392–1407.
  • Shi, Y., P. E. Kroeger, and R. I. Morimoto. 1995. The carboxyl-terminal transactivation domain of heat shock factor 1 is negatively regulated and stress responsive. Mol. Cell. Biol. 15:4309–4318.
  • Sorger, P. K., and H. R. Pelham. 1988. Yeast heat shock factor is an essential DNA-binding protein that exhibits temperature-dependent phosphorylation. Cell 54:855–864.
  • Sorger, P. K., and H. C. Nelson. 1989. Trimerization of a yeast transcriptional activator via a coiled-coil motif. Cell 59:807–813.
  • Sun, P., H. Enslen, P. S. Myung, and R. A. Maurer. 1994. Differential activation of CREB by Ca21/calmodulin-dependent protein kinases type II and type IV involves phosphorylation of a site that negatively regulates activity. Genes Dev. 8:2527–2539.
  • Westwood, J. T., and C. Wu. 1993. Activation of Drosophila heat shock factor: conformational change associated with a monomer-to-trimer transition. Mol. Cell. Biol. 13:3481–3486.
  • Wu, B., C. Hunt, and R. I. Morimoto. 1985. Structure and expression of the human gene encoding major heat shock protein HSP70. Mol. Cell. Biol. 5:330–341.
  • Wu, C. 1995. Heat shock transcription factors: structure and regulation. Annu. Rev. Cell Dev. Biol. 11:441–469.
  • Zuo, J., R. Baler, G. Dahl, and R. Voellmy. 1994. Activation of the DNA- binding ability of human heat shock transcription factor 1 may involve the transition from an intramolecular to an intermolecular triple-stranded coiled-coil structure. Mol. Cell. Biol. 14:7557–7568.
  • Zuo, J., D. Rungger, and R. Voellmy. 1995. Multiple layers of regulation of human heat shock factor 1. Mol. Cell. Biol. 15:4319–4330.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.