3
Views
94
CrossRef citations to date
0
Altmetric
Research Article

Genetic and Biochemical Analysis of Msh2p-Msh6p: Role of ATP Hydrolysis and Msh2p-Msh6p Subunit Interactions in Mismatch Base Pair Recognition

, , , &
Pages 2436-2447 | Received 23 Sep 1996, Accepted 25 Jan 1997, Published online: 29 Mar 2023

REFERENCES

  • Alani, E. 1996. The Saccharomyces cerevisiae Msh2p and Msh6p form a complex that specifically binds to duplex oligonucleotides containing mismatched DNA base pairs. Mol. Cell. Biol. 16:5604–5615.
  • Alani, E., N. W. Chi, and R. D. Kolodner. 1995. The Saccharomyces cerevisiae Msh2 protein specifically binds to duplex oligonucleotides containing mismatched DNA base pairs and loop insertions. Genes Dev. 9:234–247.
  • Alani, E., R. A. G. Reenan, and R. D. Kolodner. 1994. Interaction between mismatch repair and genetic recombination in Saccharomyces cerevisiae. Genetics 137:19–39.
  • Au, K. G., K. Welsh, and P. Modrich. 1992. Initiation of methyl-directed mismatch repair. J. Biol. Chem. 267:12142–12148.
  • Biswas, I., and P. Hsieh. 1996. Identification and characterization of a thermostable MutS homolog from Thermus aquaticus. J. Biol. Chem. 271:5040–5048.
  • Bourne, H. R. 1995. Trimeric G. Proteins: surprise witness tells a tale. Science 270:933–934.
  • Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254.
  • Carey, M., H. Kakidani, J. Leatherwood, F. Mostashari, and M. Ptashne. 1989. An ammo-terminal fragment of GAL4 binds as a dimer. J. Mol. Biol. 209:423–432.
  • Chi, N., and R. D. Kolodner. 1994a. Purification and characterization of Mshl, a yeast mitochondrial protein that binds to DNA mismatches. J. Biol. Chem. 269:29984–29992.
  • Chi, N., and R. D. Kolodner. 1994b. The effect of DNA mismatches on the ATPase activity of Mshl, a protein in yeast mitochondria that recognizes DNA mismatches. J. Biol. Chem. 269:29993–29997.
  • Drummond, J. T., G.-M. Li, M. J. Longley, and P. Modrich. 1995. Mismatch recognition by an hMSH2-GTBP heterodimer and differential repair defects in tumor cells. Science 268:1909–1912.
  • Fishel, R., M. K. Lescoe, M. R. S. Rao, N. G. Copeland, N. A. Jenkins, J. Garber, M. Kane, and R. D. Kolodner. 1993. The human mutator gene homolog Msh2 and its association with hereditary nonpolyposis colon cancer. Cell 75:1027–1038.
  • Gietz, R. D., and R. H. Schiestl. 1991. Applications of high efficiency lithium acetate transformation of intact yeast cells using single-stranded nucleic acids as carrier. Yeast 7:253–263.
  • Gorbalenya, A. E., and E. V. Koonin. 1990. Superfamily of uvrA-related binding proteins. Implications for rational classification of recombination repair systems. J. Mol. Biol. 213:583–591.
  • Grilley, M., K. M. Welsh, S.-S. Su, and P. Modrich. 1989. Isolation and characterization of the Escherichia coli mutL gene product. J. Biol. Chem. 264:1000–1004.
  • Haber, L. T., P. P. Pang, D. I. Sobell, J. A. Mankovich and G. C. Walker. 1988. Nucleotide sequence of the Salmonella typhimurium mutS gene required for mismatch repair: homology of mutS and hexA of Streptococcus pneumoniae. J. Bacteriol. 170:197–202.
  • Haber, L. T., and G. C. Walker. 1991. Altering the conserved nucleotide binding motif in the Salmonella typhimurium MutS mismatch repair protein affects both its ATPase and mismatch binding activities. EMBO J. 10:2707–2715.
  • Habraken, Y., P. Sung, L. Prakash, and S. Prakash. 1996. Binding of insertion/deletion DNA mismatches by the heterodimer of yeast mismatch repair proteins MSH2 and MSH3. Curr. Biol. 6:1185–1187.
  • Ho, S. N., H. D. Hunt, R. M. Horton, J. K. Pullen, and L. R. Pease. 1989. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77:51–59.
  • Hollingsworth, N. M., L. Ponte, and C. Halsey. 1995. MSH5, a novel MutS homolog, facilitates meiotic reciprocal recombination between homologs in Saccharomyces cerevisiae but not mismatch repair. Genes Dev. 9:1728–1739.
  • Hughes, M. J., and J. Jiricny. 1992. The purification of a human mismatch-binding protein and identification of its associated ATPase and helicase activities. J. Biol. Chem. 267:23876–23882.
  • Iaccarino, I., F. Palombo, J. Drummond, N. F. Totty, J. J. Hsuan, P. Mod-rich, and J. Jiricny. 1996. MSH6, a Saccharomyces cerevisiae protein that binds to mismatches as a heterodimer with MSH2. Curr. Biol. 6:484–486.
  • Jiricny, J., S. Su, S. G. Wood, and P. Modrich. 1988. Mismatch-containing oligonucleotide duplexes bound by the E. coli mutS-encoded protein. Nucleic Acids Res. 16:7843–7853.
  • Johnson, R. E., G. K. Kowali, L. Prakash, and S. Prakash. 1996. Requirement of the yeast MSH3 and MSH6 genes for MSH2 dependent genomic stability. J. Biol. Chem. 271:7285–7288.
  • Kolodner, R. D. 1995. Mismatch repair: mechanisms and relationship to cancer susceptibility. Trends Biochem. 20:397–401.
  • Kolodziej, P. A., and R. A. Young. 1991. Epitope tagging and protein surveillance. Methods Enzymol. 194:508–519.
  • Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685.
  • Lahue, R. S., K. G. Au, and P. Modrich. 1989. DNA mismatch correction in a defined system. Science 245:160–164.
  • Leach, F. S., N. C. Nicolaides, N. Papadopoulos, B. Liu, J. Jen, R. Parsons, P. Peltomaki, P. Sistonen, L. A. Aaltonen, M. Nystrom-Lahti, X.-Y. Guan, J. Zhang, P. S. Meltzer, J.-W. Yu, F.-T. Kao, D. J. Chen, K. M. Cerosaletti, R. E. K. Fournier, S. Todd, T. Lewis, R. J. Leach, S. L. Naylor, J. Weissenbach, J.-P. Mecklin, H. Jarvinen, G. M. Petersen, S. R. Hamilton, J. Green, J. Jass, P. Watson, H. T. Lynch, J. M. Trent, A. de la Chapelle, K. W. Kinzler, and B. Vogelstein. 1993. Mutations of a MutS homolog in hereditary nonpolyposis colorectal cancer. Cell 75:1215–1225.
  • Maniatis, T., E. F. Fritsch, and J. Sambrook. 1982. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Marsischky, G. T., N. Filosi, M. F. Kane, and R. Kolodner. 1996. Redundancy of Saccharomyces cerevisiae MSH3 and MSH6 in MSH2-dependent mismatch repair. Genes Dev. 10:407–420.
  • McEntee, K., G. Weinstock, and I. R. Lehman. 1980. recA protein-catalyzed strand assimilation: stimulation by Escherichia coli single-stranded DNA-binding protein. Proc. Natl. Acad. Sci. USA 77:857–861.
  • Miller, J. 1972. Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Miret, J. J., M. G. Milla, and R. S. Lahue. 1993. Characterization of a DNA mismatch-binding activity in yeast extracts. J. Biol. Chem. 268:3507–3513.
  • Miret, J. J., and R. Lahue. Unpublished data.
  • Miret, J. J., B. O. Parker, and R. S. Lahue. 1996. Recognition of DNA insertion/deletion mismatches by an activity in Saccharomyces cerevisiae. Nucleic Acids Res. 24:721–729.
  • Modrich, P. 1991. Mechanisms and biological effects of mismatch repair. Annu. Rev. Genet. 25:229–253.
  • Modrich, P., and R. S. Lahue. 1996. Mismatch repair in replication fidelity, genetic recombination and cancer biology. Annu. Rev. Biochem. 65:101–133.
  • Nag, D. K., and T. D. Petes. 1991. Seven-base-pair inverted repeats in DNA form stable hairpin in vivo in Saccharomyces cerevisiae. Genetics 129:669–673.
  • New, L., K. Liu, and G. F. Crouse. 1993. The yeast gene MSH3 defines a new class of eukaryotic MutS homologues. Mol. Gen. Genet. 239:97–108.
  • Ohlendorf, D. H., W. F. Anderson, and B. W. Mathews. 1983. Many gene-regulatory proteins appear to have a similar α-helical fold that binds DNA and evolved from a common precursor. J. Mol. Evol. 19:109–114.
  • Pabo, C. O., and R. T. Sauer. 1984. Protein-DNA recognition. Annu. Rev. Biochem. 53:293–321.
  • Palombo, F., P. Gallinari, I. Iaccarino, T. Lettieri, M. Hughes, A. D’Arrigo, O. Truong, J. J. Hsuan, and J. Jiricny. 1995. GTBP, a 160 kD protein essential for mismatch binding activity in human cells. Science 268:1912–1914.
  • Palombo, F., I. Iaccarino, E. Nakajima, M. Ikejima, T. Shimada, and J. Jiricny. 1996. hMutSβ, a heterodimer of hMSH2 and hMSH3, binds to insertion/deletion loops in DNA. Curr. Biol. 6:1181–1184.
  • Parker, B. O., and M. G. Marinus. 1992. Repair of DNA heteroduplexess containing small heterologous sequences in Escherichia coli. Proc. Natl. Acad. Sci. USA 89:1730–1734.
  • Petes, T. D., R. E. Malone, and L. S. Symington. 1991. Recombination in yeast, pp. 407–521. In J. R. Broach, J. R. Pringle, and E. W. Jones (ed.), The molecular and cellular biology of the yeast Saccharomyces: genome dynamics, protein synthesis and energetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Prolla, T. A., Q. Pang, E. Alani, R. D. Kolodner, and R. M. Liskay. 1994b. Interactions between the Msh2, Mlh1 and Pms1 proteins during the initiation of DNA mismatch repair. Science 265:1091–1093.
  • Reenan, R. A. G. 1991. Identification and characterization of genes involved in mismatch repair in Saccharomyces cerevisiae. Ph.D. thesis. Harvard University, Cambridge, Mass.
  • Reenan, R. A. G., and R. D. Kolodner. 1992a. Isolation and characterization of two Saccharomyces cerevisiae genes encoding homologs of the bacterial HexA and MutS mismatch repair proteins. Genetics 132:963–973.
  • Reenan, R. A. G., and R. D. Kolodner. 1992b. Characterization of insertion mutations in the Saccharomyces cerevisiae MSH1 and MSH2 genes: evidence for separate mitochondrial and nuclear functions. Genetics 132:975–985.
  • Rose, M. D., F. Winston, and P. Hieter. 1990. Methods in yeast genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Ross-Macdonald, P., and G. S. Roeder. 1994. Mutation of a meiosis-specific MutS homolog decreases crossing over but not mismatch correction. Cell 79:1069–1080.
  • Sherman, F., G. Fink, and J. Hicks. 1983. Methods in yeast genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Sokolsky, T., and E. Alani. Unpublished data.
  • Su, S., R. S. Lahue, K. G. Au, and P. Modrich. 1988. Mispair specificity of methyl-directed DNA mismatch correction in vitro. J. Biol. Chem. 263:6829–6835.
  • Su, S., and P. Modrich. 1986. Escherichia coli mutS-encoded protein binds to mismatched DNA base pairs. Proc. Natl. Acad. Sci. USA 83:5057–5061.
  • Sung, P., D. Higgins, L. Prakash, and S. Prakash. 1988. A mutation of lysine-48 to arginine in the yeast RAD3 protein abolishes its ATPase and DNA helicase activities but not its ability to bind ATP. EMBO J. 7:3263–3269.
  • Wang, J., and L. Grossman. 1993. Mutations in the helix-turn-helix motif of the Escherichia coli UvrA protein eliminates its specificity for UV-damaged DNA. J. Biol. Chem. 268:5323–5331.
  • Welsh, K. M., A.-L. Lu, S. Clark, and P. Modrich. 1987. Isolation and characterization of the Escherichia coli mutH gene product. J. Biol. Chem. 262:15624–15629.
  • Wharton, R. P., and M. Ptashne. 1986. An α-helix determines the DNA-binding specificity of a repressor. Trends Biochem. Sci. 11:71–73.
  • Winston, F., C. Dollard and S. L. Ricupero-Hovasse. 1995. Construction of a set of convenient Saccharomyces cerevisiae strains that are isogenic to S288C. Yeast 11:53–55.
  • Wissman, A., R. Baumeister, G. Muller, B. Hecht, V. Helbl, K. Pfleiderer, and W. Hillen. 1991. Amino acids determining operator binding specificity in the helix-turn-helix motif of Tn10 Tet repressor. EMBO J. 10:4145–4152.
  • Wu, T.-H., and M. G. Marinus. 1994. Dominant negative mutator mutations in the mutS gene of Escherichia coli. J. Bacteriol. 176:5393–5400.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.