12
Views
73
CrossRef citations to date
0
Altmetric
Research Article

CHS5, a Gene Involved in Chitin Synthesis and Mating in Saccharomyces cerevisiae

, &
Pages 2485-2496 | Received 11 Nov 1996, Accepted 28 Jan 1997, Published online: 29 Mar 2023

REFERENCES

  • Appeltauer, U., and T. Achstetter. 1989. Hormone-induced expression of the CHS1 gene from Saccharomyces cerevisiae. Eur. J. Biochem. 181:243–247.
  • Ausubel, F. M., R. Brent, R. E. Kingston, D. D. Moore, J. A. Smith, J. G. Seidman, and K. Struhl. 1987. Current protocols in molecular biology. Greene Publishing Associates and Wiley-Interscience, New York, N.Y.
  • Bacon, J. S. D., V. C. Farmer, D. Jones, and I. F. Taylor. 1969. The glucan components of the cell wall of baker’s yeast (Saccharomyces cerevisiae) considered in relation to its ultrastructure. Biochem. J. 114:557–567.
  • Boone, C., K. Blundell, R. Dorer, M. Evangelista, T. Favero, and S. Ritchie. 1996. A synthetic sterile screening to identify genes required for cell fusion during S. cerevisiae conjugation. Yeast Genetics and Molecular Biology Meeting. Madison, Wis.
  • Briza, P., A. Ellinger, G. Winkler, and M. Breitenbach. 1988. Chemical composition of yeast ascospore wall. The second outer layer consists of chitosan. J. Biol. Chem. 263:11569–11574.
  • Briza, P., M. Breitenbach, A. Ellinger, and J. Segall. 1990. Isolation of two developmentally regulated genes involved in spore wall maturation in Sac-charomyces cerevisiae. Genes Dev. 4:1775–1789.
  • Bulawa, C. E. 1992. CSD2, CSD3, and CSD4, genes required for chitin synthesis in Saccharomyces cerevisiae: the CSD2 gene product is related to chitin synthases and to developmentally regulated proteins in Rhizobium species and Xenopus laevis. Mol. Cell. Biol. 12:1764–1776.
  • Bulawa, C. E. 1993. Genetics and molecular biology of chitin synthesis in fungi. Annu. Rev. Microbiol. 47:505–534.
  • Bulawa, C. E., and B. C. Osmond. 1990. Chitin synthase I and chitin synthase II are not required for chitin synthesis in vivo in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 87:7424–7428.
  • Bulawa, C. E., M. L. Slater, E. Cabib, J. Au-Young, A. Sburlati, W. L. Adair, and P. W. Robbins. 1986. The Saccharomyces cerevisiae structural gene for chitin synthase is not required for chitin synthesis in vivo. Cell 46:213–225.
  • Cabib, E. 1994. Nomenclature of genes related to chitin synthesis. Yeast Newsl. 43:58.
  • Cabib, E., and B. Bowers. 1971. Chitin and yeast budding: localization of chitin in yeast bud scars. J. Biol. Chem. 246:152–159.
  • Cabib, E., A. Sburlati, B. Bowers, and S. J. Silverman. 1989. Chitin synthase 1, an auxiliary enzyme for chitin synthesis in Saccharomyces cerevisiae. J. Cell Biol. 108:1665–1672.
  • Cabib, E., S. J. Silverman, and J. A. Shaw. 1992. Chitinase and chitin synthase 1: counterbalancing activities in cell separation of Saccharomyces cerevisiae. J. Gen. Microbiol. 138:97–102.
  • Cabib, E., R. Ulane, and B. Bowers. 1974. A molecular model for morphogenesis: the primary septum of yeast. Curr. Top. Cell. Regul. 8:1–32.
  • Chenevert, J., N. Valtz, and I. Herskowitz. 1994. Identification of genes required for normal pheromone-induced cell polarization in Saccharomyces cerevisiae. Genetics 136:1287–1297.
  • Choi, W.-J., B. Santos, A. Durán, and E. Cabib. 1994. Are yeast chitin synthases regulated at the transcriptional or the posttranslational level? Mol. Cell. Biol. 14:7685–7694.
  • Choi, W. J., A. Sburlati, and E. Cabib. 1994. Chitin synthase 3 from yeast has zymogenic properties that depend on both the CAL1 and the CAL3 genes. Proc. Natl. Acad. Sci. USA 91:4727–4730.
  • Chu, G., D. Volrath, and R. W. Davis. 1986. Separation of large DNA molecules by contour-clamped homogeneous electric fields. Science 234:1582–1585.
  • Cid, V. J., A. Durán, F. del Rey, M. P. Snyder, C. Nombela, and M. Sanchez. 1995. Molecular basis of cell integrity and morphogenesis in Saccharomyces cerevisiae. Microbiol. Rev. 59:345–386.
  • Conde, J., and G. R. Fink. 1976. A mutant of Saccharomyces cerevisiae defective for nuclear fusion. Proc. Natl. Acad. Sci. USA 73:3651–3655.
  • Courchesne, W. E., R. Kunisawa, and J. Thorner. 1989. A putative protein kinase overcomes pheromone-induced arrest of cell cycling in S. cerevisiae. Cell 58:1107–1119.
  • de Cos, T., A. Durán, and C. Roncero. Unpublished data.
  • Elion, E. A., P. L. Grisafi, and G. R. Fink. 1990. FUS3 encodes a cdc2+/ CDC28 related kinase required for the transition from mitosis into conjugation. Cell 60:649–664.
  • Elion, E. A., J. Trueheart, and G. R. Fink. 1995. Fus2 localizes near the site of cell fusion and is required for both cell fusion and nuclear alignment during zygote formation. J. Cell Biol. 130:1283–1296.
  • Eller, M. S., H. H. Stedman, J. E. Sylvester, S. H. Fertels, N. A. Rubinstein, A. M. Kelly, and S. Sarkar. 1989. Nucleotide sequence of full length embryonic myosin heavy cDNA. Nucleic Acids Res. 17:3591–3592.
  • Errede, B., R. M. Cade, B. M. Yashar, D. E. Levin, K. Irie, and K. Matsu-moto. 1995. Dynamics and organization of MAP kinase signal pathways. Mol. Reprod. Dev. 42:477–485.
  • Feinberg, A. P., and B. Vogelstein. 1983. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 132:6–13.
  • Fox, T. D., L. S. Folley, J. J. Mulero, T. W. McMullin, P. E. Thorness, L. O. Hedin, and M. C. Costanzo. 1991. Analysis and manipulation of yeast mitochondrial genes. Methods Enzymol. 194:149–165.
  • Friderich, E., K. Vancompernolle, C. Huet, M. Goethals, J. Finidori, J. Vanderkerckhove, and D. Louvard. 1992. An actin-binding site containing a conserved motif of charged amino acid is essential for the morphogenetic effect of villin. Cell 70:81–92.
  • Gehrung, S., and M. Snyder. 1990. The SPA2 gene of Saccharomyces cerevisiae is important for pheromone-induced morphogenesis and efficient mating. J. Cell Biol. 111:1451–1464.
  • Ito, H., Y. Fukuda, K. Murata, and A. Kimura. 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153:163–168.
  • Julien, J. P., F. Cote, L. Beaudet, M. Sidky, D. Flavell, F. Grosveld, and W. Mushynski. 1988. Sequence and structure of the mouse gene coding for the largest neurofilament subunit. Gene 68:307–314.
  • Kollar, R., E. Petrakova, G. Ashwell, P. W. Robbins, and E. Cabib. 1995. Architecture of the yeast cell wall: the linkage between chitin and β(1-3)-glucan. J. Biol. Chem. 270:1170–1178.
  • Kölling, R., T. Nguyen, E. Y. Chen, and D. Botstein. 1993. A new yeast gene with a myosin-like heptad repeat structure. Mol. Gen. Genet. 237:359–369.
  • Kuranda, M. J., and P. W. Robbins. 1991. Chitinase is required for cell separation during growth of Saccharomyces cerevisiae. J. Biol. Chem. 266:19758–19767.
  • Leal-Morales, C. A., C. E. Bracker, and S. Bartnicki-García. 1988. Localization of chitin synthetase in cell-free homogenates of Saccharomyces cerevisiae: chitosomes and plasma membrane. Proc. Natl. Acad. Sci. USA 85:8516–8520.
  • Lees, J. F., P. S. Sheldman, S. F. Skuntz, M. J. Carden, and R. A. Lazzarini. 1988. The structure and organization of the human heavy neurofilament subunit (NF-H) and the gene encoding it. EMBO J. 7:1947–1955.
  • Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.
  • Mazur, P., N. Morin, W. Baginsky, M. El-Sherbeini, J. A. Clemas, J. B. Nielsen, and F. Foor. 1995. Differential expression and function of two homologous subunits of yeast 1,3-β-D-glucan synthase. Mol. Cell. Biol. 15:5671–5681.
  • Pammer, M., P. Briza, A. Ellinger, T. Schuster, R. Stucka, H. Feldmann, and M. Breitenbach. 1992. DIT101 (CSD2, CAL1), a cell cycle-regulated yeast gene required for synthesis of chitin in cell walls and chitosan in spore walls. Yeast 8:1089–1099.
  • Percival-Smith, A., and J. Segall. 1984. Isolation of DNA sequences preferentially expressed during sporulation in Saccharomyces cerevisiae. Mol. Cell. Biol. 4:142–150.
  • Roncero, C., and A. Durán. 1985. Effect of Calcofluor white and Congo red on fungal cell wall morphogenesis: in vivo activation of chitin polymerization. J. Bacteriol. 163:1180–1185.
  • Roncero, C., M. H. Valdivieso, J. C. Ribas, and A. Durán. 1988. Isolation and characterization of Saccharomyces cerevisiae mutants resistant to Calcofluor white. J. Bacteriol. 170:1950–1954.
  • Rose, M. D., P. Novick, J. H. Thomas, D. Botstein, and G. R. Fink. 1987. A Saccharomyces cerevisiae genomic plasmid bank based on a centromere-containing shuttle vector. Gene 60:237–243.
  • Rothstein, R. 1983. One-step gene disruption in yeast. Methods Enzymol. 101:202–211.
  • Rothstein, R. 1991. Targeting, disruption, replacement, and allele rescue: integrative DNA transformation in yeast. Methods Enzymol. 101:281–301.
  • Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Sanger, F., S. Nicklen, and A. R. Coulson. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74:5463–5467.
  • San Segundo, P., J. Correa, C. R. Vazquez de Aldana, and F. del Rey. 1993. SSG1, a gene encoding a sporulation-specific 1,3-β-glucanase in Saccharomyces cerevisiae. J. Bacteriol. 175:3823–3837.
  • Santos, B., and M. Snyder. 1997. Targeting of chitin synthase 3 to polarized growth sites in yeast requires Chs5p and Myo2p. J. Cell Biol. 136:95–110.
  • Schekman, R., and V. Brawley. 1979. Localized deposition of chitin on the yeast cell surface in response to mating pheromone. Proc. Natl. Acad. Sci. USA 76:645–649.
  • Sena, E. P., D. N. Radin, J. Welch, and S. Fogel. 1975. Synchronous mating in yeast. Methods Cell Biol. 11:71–78.
  • Shaw, J. A., P. C. Mol, B. Bowers, S. J. Silverman, M. H. Valdivieso, A. Durán, and E. Cabib. 1991. The function of chitin synthases 2 and 3 in the Saccharomyces cerevisiae cell cycle. J. Cell Biol. 114:111–123.
  • Sherman, F., G. R. Fink, and J. B. Hicks. 1986. Methods in yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Silverman, S. J., A. Sburlati, M. L. Slater, and E. Cabib. 1988. Chitin synthase 2 is essential for septum formation and cell division in Saccharo-myces cerevisiae. Proc. Natl. Acad. Sci. USA 85:4735–4739.
  • Sprague, G. F., Jr., and J. W. Thorner. 1992. Pheromone response and signal transduction during the mating process of Saccharomyces cerevisiae, p. 657–744. In E. Jones, J. Pringle, and J. Broach (ed.), The molecular and cellular biology of the yeast Saccharomyces. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Struhl, K., D. T. Stinchcomb, S. Scherer, and R. W. Davis. 1979. High-frequency transformation of yeast: autonomous replication of hybrid DNA molecules. Proc. Natl. Acad. Sci. USA 76:1035–1039.
  • Trueheart, J., J. D. Boeke, and G. R. Fink. 1987. Two genes required for cell fusion during yeast conjugation: evidence for a pheromone-induced surface protein. Mol. Cell. Biol. 7:2316–2328.
  • Trueheart, J., and G. R. Fink. 1989. The yeast cell fusion protein FUS1 is O-glycosylated and spans the plasma membrane. Proc. Natl. Acad. Sci. USA 86:9916–9920.
  • Valdivieso, M. H., P. C. Mol, J. A. Shaw, E. Cabib, and A. Durán. 1991. CAL1, a gene required for activity of chitin synthase 3 in Saccharomyces cerevisiae. J. Cell Biol. 114:101–109.
  • Vanderkerckhove, J., and C. Vancompernolle. 1992. Structural relationships of actin-binding proteins. Curr. Opin. Cell Biol. 4:36–42.
  • Zarzov, P., C. Mazzoni, and C. Mann. 1996. The SLT2 (MPK1) MAP kinase is activated during periods of polarized cell growth in yeast. EMBO J. 15:83–91.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.