14
Views
26
CrossRef citations to date
0
Altmetric
Research Article

The DNA Binding and Activation Domains of Gal4p Are Sufficient for Conveying Its Regulatory Signals

&
Pages 2538-2549 | Received 04 Sep 1996, Accepted 10 Feb 1997, Published online: 29 Mar 2023

REFERENCES

  • Akiyama, K., K. Yokota, S. Kagawa, N. Shimbara, G. N. DeMartino, C. A. Slaughter, C. Noda, and K. Tanaka. 1995. cDNA cloning of a new putative ATPase subunit p45 of the human 26S proteasome, a homolog of yeast transcriptional factor Sug1p. FEBS Lett. 363:151–156.
  • Bajwa, W., T. E. Torchia, and J. E. Hopper. 1988. Yeast regulatory gene GAL 3: carbon regulation; UASGAL elements in common with GAL1, GAL7, GAL10, GAL80, and MEL1; encoded protein strikingly similar to yeast and Escherichia coli galactokinases. Mol. Cell. Biol. 8:3439–3447.
  • Baker, S. M., S. A. Johnston, J. E. Hopper, and J. A. Jaehning. 1987. Transcription of multiple copies of the yeast GAL7 gene is limited by specific factors in addition to GAL4. Mol. Gen. Genet. 208:127–134.
  • Bhat, P. J., and J. E. Hopper. 1991. The mechanism of inducer formation in gal3 mutants of the yeast galactose system is independent of normal galac-tose metabolism and mitochondrial respiratory function. Genetics 128:233–239.
  • Bhat, P. J., and J. E. Hopper. 1992. Overproduction of the GAL1 or GAL3 protein causes galactose-independent activation of the GAL4 protein: evidence for a new model of induction for the yeast GAL/MEL regulon. Mol. Cell. Biol. 12:2701–2707.
  • Bhat, P. J., D. Oh, and J. E. Hopper. 1990. Analysis of the GAL3 signal transduction pathway activating GAL4 protein-dependent transcription in Saccharomyces cerevisiae. Genetics 125:281–291.
  • Bram, R. J., N. F. Lue, and R. D. Kornberg. 1986. A GAL family of upstream activating sequences in yeast: roles in both induction and repression of transcription. EMBO J. 5:603–608.
  • Brent, R., and M. Ptashne. 1985. A eukaryotic transcriptional activator bearing the DNA specificity of a prokaryotic repressor. Cell 43:729–736.
  • Carey, M., H. Kakidani, J. Leatherwood, F. Mostashari, and M. Ptashne. 1989. An amino-terminal fragment of GAL4 binds DNA as a dimer. J. Mol. Biol. 209:423–432.
  • Chasman, D. I., and R. D. Kornberg. 1990. GAL4 protein: purification, association with GAL80 protein, and conserved domain structure. Mol. Cell. Biol. 10:2916–2923.
  • Cherry, J. R., T. R. Johnson, C. Dollard, J. R. Shuster, and C. L. Denis. 1989. Cyclic AMP-dependent protein kinase phosphorylates and inactivates the yeast transcriptional activator ADR1. Cell 56:409–419.
  • Cook, W. J., D. Chase, D. C. Audino, and C. L. Denis. 1994. Dissection of the ADR1 protein reveals multiple, functionally redundant activation domains interspersed with inhibitory regions: evidence for a repressor binding to the ADR1c region. Mol. Cell. Biol. 14:629–640.
  • Denis, C. L., S. C. Fontaine, D. Chase, B. E. Kemp, and L. T. Bemis. 1992. ADR1c mutations enhance the ability of ADR1 to activate transcription by a mechanism that is independent of effects on cyclic AMP-dependent protein kinase phosphorylation of Ser-230. Mol. Cell. Biol. 12:1507–1514.
  • Desetages, S. A. G., D. A. Falvey, R. J. Reece, and M. C. Brandriss. 1996. Functional analysis of the Put3 transcriptional activator of the pro-line utilization pathway in Saccharomyces cerevisiae. Genetics 142:1069–1082.
  • Donaldson, L. W., J. M. Petersen, B. J. Graves, and L. P. McIntosh. 1996. Solution structure of the ETS domain from murine Ets-1: a winged helix-turn-helix DNA binding motif. EMBO J. 15:125–134.
  • Gill, G., and M. Ptashne. 1988. Negative effect of the transcriptional activator GAL4. Nature 334:721–724.
  • Griggs, D. W., and M. Johnston. 1991. Regulated expression of the GAL4 activator gene in yeast provides a sensitive genetic switch for glucose repression. Proc. Natl. Acad. Sci. USA 88:8597–8601.
  • Hashimoto, H., Y. Kikuchi, Y. Nogi, and T. Fukusawa. 1983. Regulation of expression of the galactose gene cluster in Saccharomyces cerevisiae. Mol. Gen. Genet. 191:31–38.
  • Huibregtse, J. M., P. D. Good, G. T. Marczynski, J. A. Jaehning, and D. R. Engelke. 1993. Gal4 protein binding is required but not sufficient for derepression and induction of GAL2 expression. J. Biol. Chem. 268:22219–22222.
  • Ito, H., Y. Fukuda, K. Murata, and A. Kimura. 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153:163–168.
  • Johnston, M. 1987. A model fungal gene regulatory mechanism: the GAL genes of Saccharomyces cerevisiae. Microbiol. Rev. 51:458–476.
  • Johnston, M., and J. Dover. 1988. Mutational analysis of the GAL4-encoded transcriptional activator protein of Saccharomyces cerevisiae. Genetics 120:63–74.
  • Johnston, M., J. S. Flick, and T. Pexton. 1994. Multiple mechanisms provide rapid and stringent glucose repression of GAL gene expression in Saccha-romyces cerevisiae. Mol. Cell. Biol. 14:3834–3841.
  • Johnston, S. A., and J. E. Hopper. 1982. Isolation of the yeast regulatory gene GAL4 and analysis of its dosage effects on the galactose/melibiose regulon. Proc. Natl. Acad. Sci. USA 79:6971–6975.
  • Johnston, S. A., J. J. Salmeron, and S. S. Dincher. 1987. Interaction of positive and negative regulatory proteins in the galactose regulon of yeast. Cell 50:143–146.
  • Johnston, S. A., M. J. Zavortink, C. Debouck, and J. E. Hopper. 1986. Functional domains of the yeast regulatory protein GAL4. Proc. Natl. Acad. Sci. USA 83:6553–6557.
  • Jonsen, M. D., J. M. Petersen, Q. P. Xu, and B. J. Graves. 1996. Characterization of the cooperative function of inhibitory sequences in Ets-1. Mol. Cell. Biol. 16:2065–2073.
  • Kim, Y. J., S. Bjorklund, Y. Li, M. H. Sayre, and R. D. Kornberg. 1994. A multiprotein mediator of transcriptional activation and its interaction with the C-terminal repeat domain of RNA polymerase II. Cell 77:599–608.
  • Kraulis, P. J., A. R. C. Raine, P. L. Gadhavi, and E. D. Laue. 1992. Structure of the DNA-binding domain of zinc GAL4. Nature 356:448–450.
  • Lamphier, M. S., and M. Ptashne. 1992. Multiple mechanisms mediate glucose repression of the yeast GAL1 gene. Proc. Natl. Acad. Sci. USA 89:5922–5926.
  • Leuther, K. K. 1993. Ph.D. thesis. University of Texas Southwestern Medical Center, Dallas.
  • Leuther, K. K., and S. A. Johnston. 1992. Nondissociation of GAL4 and GAL80 in vivo after galactose induction. Science 256:1333–1335.
  • Leuther, K. K., J. M. Salmeron, and S. A. Johnston. 1993. Genetic evidence that an activation domain of GAL4 does not require acidity and may form a beta sheet. Cell 72:575–585.
  • Lue, N. F., D. I. Chasman, A. R. Buchman, and R. D. Kornberg. 1987. Interaction of GAL4 and GAL80 gene regulatory proteins in vitro. Mol. Cell. Biol. 7:3446–3451.
  • Ma, J., and M. Ptashne. 1987. The carboxy-terminal 30 amino acids of GAL4 are recognized by GAL80. Cell 50:137–142.
  • Ma, J., and M. Ptashne. 1987. Deletion analysis of GAL4 defines two tran-scriptional activating segments. Cell 48:847–853.
  • Marczak, J. E., and M. C. Brandriss. 1991. Analysis of constitutive and noninducible mutations of the PUT3 transcriptional activator. Mol. Cell. Biol. 11:2609–2619.
  • Marmorstein, R., M. Carey, M. Ptashne, and S. C. Harrison. 1992. DNA recognition by GAL4: structure of a protein-DNA complex. Nature 356:408–414.
  • Melcher, K., and S. A. Johnston. 1995. GAL4 interacts with TATA binding protein and coactivators. Mol. Cell. Biol. 15:2839–2848.
  • Melcher, K., and S. A. Johnston. Unpublished data.
  • Meyer, J., A. Walker-Jonah, and C. P. Hollenberg. 1991. Galactokinase encoded by GAL1 is a bifunctional protein required for the induction of the GAL genes in Kluyveromyces lactis and able to suppress the gal3 phenotype in Saccharomyces cerevisiae. Mol. Cell. Biol. 11:5454–5461.
  • Mylin, L. M., J. P. Bhat, and J. E. Hopper. 1989. Regulated phosphorylation and dephosphorylation of GAL4, a transcriptional activator. Genes Dev. 3:1157–1165.
  • Mylin, L. M., M. Johnston, and J. E. Hopper. 1990. Phosphorylated forms of GAL4 are correlated with ability to activate transcription. Mol. Cell. Biol. 10:4623–4629.
  • Nehlin, J. O., M. Carlberg, and H. Ronne. 1991. Control of yeast GAL genes by MIG1 repressor: a transcriptional cascade in the glucose response. EMBO J. 10:3373–3377.
  • Nishizawa, M., Y. Suzuki, Y. Nogi, K. Matsumoto, and T. Fukasawa. 1990. Yeast Gal11 protein mediates the transcriptional activation signal of two different transacting factors, Gal4 and general regulatory factor I/repressor/ activator site binding protein 1/translation upstream factor. Proc. Natl. Acad. Sci. USA 87:5373–5377.
  • Nogi, Y., and T. Fukusawa. 1983. A novel mutation that affects utilization of galactose in Saccharomyces cerevisiae. Curr. Genet. 195:115–120.
  • Ohashi, Y., J. M. Brickman, E. Furman, B. Middleton, and M. Carey. 1994. Modulating the potency of an activator in a yeast in vitro transcription system. Mol. Cell. Biol. 14:2731–2739.
  • Parthun, M. R., and J. A. Jaehning. 1990. Purification and characterization of the yeast transcriptional activator GAL4. J. Biol. Chem. 265:209–213.
  • Parthun, M. R., and J. A. Jaehning. 1992. A transcriptionally active form of GAL4 is phosphorylated and associated with GAL80. Mol. Cell. Biol. 12:4981–4987.
  • Petersen, J. M., J. J. Skalicky, L. W. Donaldson, L. P. McIntosh, T. Alber, and B. J. Graves. 1995. Modulation of transcription factor Ets-1 DNA binding: DNA-induced unfolding of an alpha helix. Science 269:1866–1869.
  • Rubin, D. M., O. Coux, I. Wefes, C. Hengartner, R. A. Young, A. L. Goldberg, and D. Finley. 1996. Identification of the gal4 suppressor Sug1 as a subunit of the yeast 26S proteasome. Nature 379:655–657.
  • Sadowski, I., C. Costa, and R. Dhanawansa. 1996. Phosphorylation of Gal4p at a single C-terminal residue is necessary for galactose-inducible transcription. Mol. Cell. Biol. 16:4879–4887.
  • Sadowski, I., D. Niedbala, K. Wood, and M. Ptashne. 1991. GAL4 is phos-phorylated as a consequence of transcriptional activation. Proc. Natl. Acad. Sci. USA 88:10510–10514.
  • Salmeron, J. J., and S. A. Johnston. 1986. Analysis of the Kluyveromyces lactis positive regulatory gene LAC9 reveals functional homology to, but sequence divergence from, the Saccharomyces cerevisiae GAL4 gene. Nucleic Acids Res. 14:7767–7781.
  • Salmeron, J. J., S. D. Langdon, and S. A. Johnston. 1989. Interaction between transcriptional activator protein LAC9 and negative regulatory protein GAL80. Mol. Cell. Biol. 9:2950–2956.
  • Sherman, F., G. R. Fink, and J. B. Hicks. 1986. Laboratory course manual for methods in yeast genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Silver, P. A., L. P. Keegan, and M. Ptashne. 1984. Amino terminus of the yeast GAL4 gene product is sufficient for nuclear localization. Proc. Natl. Acad. Sci. USA 81:5951–5955.
  • Spiegelman, S., R. Rotman-Sussman, and E. Pinska. 1950. On the cytoplas-mic nature of “long-term adaptation” in yeast. Proc. Natl. Acad. Sci. USA 36:591–606.
  • Starr, D. B., W. Matsui, J. R. Thomas, and K. R. Yamamoto. 1996. Intra-cellular receptors use a common mechanism to interpret signaling information at response elements. Genes Dev. 10:1271–1283.
  • Stone, G., and I. Sadowski. 1993. GAL4 is regulated by a glucose-responsive functional domain. EMBO J. 12:1375–1385.
  • Suzuki, Y., Y. Nogi, A. Abe, and T. Fukasawa. 1988. GAL11 protein, an auxiliary transcription activator for genes encoding galactose-metab olizing enzymes in Saccharomyces cerevisiae. Mol. Cell. Biol. 8:4991–4999.
  • Suzukifujimoto, T., M. Fukuma, K. Yano, H. Sakurai, A. Vonika, S. A. Johnston, and T. Fukasawa. 1996. Analysis of the galactose signal transduc-tion pathway in Saccharomyces cerevisiae: interaction between Gal3p and Gal80p. Mol. Cell. Biol. 16:2504–2508.
  • Swaffield, J. C., J. F. Bromberg, and S. A. Johnston. 1992. Alterations in a yeast protein resembling HIV Tat-binding protein relieve requirement for an acidic activation domain in GAL4. Nature 360:698–700.
  • Swaffield, J. C., K. Melcher, and S. A. Johnston. 1996. Correction: a highly conserved ATPase protein as a mediator between acidic activation domains and the TATA-binding protein. Nature 379:658.
  • Swaffield, J. C., K. Melcher, and S. A. Johnston. 1995. A highly conserved ATPase protein as a mediator between acidic activation domains and the TATA-binding protein. Nature 374:88–91.
  • Sze, J. Y., M. Woontner, J. A. Jaehning, and G. B. Kohlhaw. 1992. In vitro transcriptional activation by a metabolic intermediate: activation by Leu3 depends on α-isopropylmalate. Science 258:1143–1145. (Erratum, 262: 492, 1993.)
  • Torchia, T. E., R. W. Hamilton, C. L. Cano, and J. E. Hopper. 1984. Disruption of regulatory gene GAL80 in Saccharomyces cerevisiae: effects on carbon-controlled regulation of the galactose/melibiose pathway genes. Mol. Cell. Biol. 4:1521–1527.
  • Torchia, T. E., and J. E. Hopper. 1986. Genetic and molecular analysis of the GAL3 gene in the expression of the galactose/melibiose regulon of Saccha-romyces cerevisiae. Genetics 113:229–246.
  • Tsai, M. J., and B. W. O’Malley. 1994. Molecular mechanisms of action of steroid/thyroid receptor superfamily members. Annu. Rev. Biochem. 63:451–486.
  • Van Hoy, M., K. K. Leuther, T. Kodadek, and S. A. Johnston. 1993. The acidic activation domains of the GCN4 and GAL4 proteins are not alpha helical but form beta sheets. Cell 72:587–594.
  • West, R. J., R. R. Yocum, and M. Ptashne. 1984. Saccharomyces cerevisiae GAL1-GAL10 divergent promoter region: location and function of the upstream activating sequence UASG. Mol. Cell. Biol. 4:2467–2478.
  • Xu, H. E., and S. A. Johnston. 1994. Yeast bleomycin hydrolase is a DNA-binding cysteine protease. J. Biol. Chem. 269:21177–21183.
  • Xu, H. E., A. Vonica, and S. A. Johnston. Unpublished data.
  • Zenke, F. T., R. Engels, V. Vollenbroich, J. Meyer, C. P. Hollenberg, and K. D. Breunig. 1996. Activation of Gal4p by galactose-dependent interaction of galactokinase and Gal80p. Science 272:1662–1665.
  • Zheng, W., and S. A. Johnston. Unpublished data.
  • Zheng, W., H. E. Xu, and S. A. Johnston. Unpublished data.
  • Zhou, K. M., and G. B. Kohlhaw. 1990. Transcriptional activator LEU3 of yeast. Mapping of the transcriptional activation function and significance of activation domain tryptophans. J. Biol. Chem. 265:17409–17412.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.