5
Views
44
CrossRef citations to date
0
Altmetric
Research Article

Pet127p, a Membrane-Associated Protein Involved in Stability and Processing of Saccharomyces cerevisiae Mitochondrial RNAs

&
Pages 2816-2824 | Received 11 Dec 1996, Accepted 14 Feb 1997, Published online: 29 Mar 2023

REFERENCES

  • Alani, E., L. Cao, and N. Kleckner. 1987. A method for gene disruption that allows repeated use of URA3 selection in the construction of multiply disrupted yeast strains. Genetics 116:541–545.
  • Ammerer, G. 1983. Expression of genes in yeast using the ADC1 promoter. Methods Enzymol. 101:192–201.
  • Boerner, P., T. L. Mason, and T. D. Fox. 1981. Synthesis and processing of ribosomal RNA in isolated yeast mitochondria. Nucleic Acids Res. 9:6379–6390.
  • Caponigro, G., and R. Parker. 1996. Mechanisms and control of mRNA turnover in Saccharomyces cerevisiae. Microbiol. Rev. 60:233–249.
  • Chen, W., and C. L. Dieckmann. 1994. Cbp1p is required for message stability following 5′-processing of COB mRNA. J. Biol. Chem. 269:16574–16578.
  • Christianson, T., and M. Rabinowitz. 1983. Identification of multiple transcriptional initiation sites on the yeast mitochondrial genome by in vitro capping with guanylyltransferase. J. Biol. Chem. 258:14025–14033.
  • Costanzo, M. C., and T. D. Fox. 1990. Control of mitochondrial gene expression in Saccharomyces cerevisiae. Annu. Rev. Genet. 24:91–113.
  • Costanzo, M. C., and T. D. Fox. 1993. Suppression of a defect in the 5′-untranslated leader of the mitochondrial COX3 mRNA by a mutation affecting an mRNA-specific translational activator protein. Mol. Cell. Biol. 13:4806–4813.
  • Costanzo, M. C., E. C. Seaver, and T. D. Fox. 1986. At least two nuclear gene products are specifically required for translation of a single yeast mitochondrial mRNA. EMBO J. 5:3637–3641.
  • Daum, G., P. Bohni, and G. Schatz. 1982. Import of proteins into mitochondria: cytochrome b2 and cytochrome c peroxidase are located in the inter-membrane space of yeast mitochondria. J. Biol. Chem. 257:13028–13033.
  • Dieckmann, C. L., and R. R. Staples. 1994. Regulation of mitochondrial gene expression in Saccharomyces cerevisiae. Int. Rev. Cytol. 152:145–181.
  • Dmochowska, A., P. Golik, and P. P. Stepien. 1995. The novel nuclear gene DSS-1 of Saccharomyces cerevisiae is necessary for mitochondrial biogenesis. Curr. Genet. 28:108–112.
  • Dunstan, H. M., and T. D. Fox. Unpublished data.
  • Engelman, D. M., T. A. Steitz, and A. Goldman. 1986. Identifying nonpolar transbilayer helices in amino-acid sequences of membrane proteins. Annu. Rev. Biophys. Biophys. Chem. 15:321–354.
  • Farrelly, F., and R. A. Butow. 1983. Rearranged mitochondrial genes in the yeast nuclear genome. Nature 301:296–301.
  • Fox, T. D. 1996. Genetics of mitochondrial translation, p. 733–758. In J. W. B. Hershey, M. B. Matthews, and N. Sonenberg (ed.), Translational control. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Fox, T. D. 1996. Translational control of endogenous and recoded nuclear genes in yeast mitochondria: regulation and membrane targeting. Experien-tia 52:1130–1135.
  • Fox, T. D., M. C. Costanzo, C. A. Strick, D. L. Marykwas, E. C. Seaver, and J. K. Rosenthal. 1988. Translational regulation of mitochondrial gene expression by nuclear genes of Saccharomyces cerevisiae. Philos. Trans. R. Soc. London B 319:97–105.
  • Fox, T. D., L. S. Folley, J. J. Mulero, T. W. McMullin, P. E. Thorsness, L. O. Hedin, and M. C. Costanzo. 1991. Analysis and manipulation of yeast mitochondrial genes. Methods Enzymol. 194:149–165.
  • Gallwitz, D., and R. Seidel. 1980. Molecular cloning of the actin gene from yeast Saccharomyces cerevisiae. Nucleic Acids Res. 8:1043–1059.
  • Gietz, R. D., and A. Sugino. 1988. New yeast and Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 74:527–534.
  • Glick, G. S., A. Brandt, K. Cunningham, S. Müller, R. L. Hallberg, and G. Schatz. 1992. Cytochromes c1 and b2 are sorted to the intermembrane space of yeast mitochondria by a stop-transfer mechanism. Cell 69:809–822.
  • Grivell, L. A. 1989. Nucleo-mitochondrial interactions in yeast mitochondrial biogenesis. Eur. J. Biochem. 182:477–493.
  • Groudinsky, O., I. Bousquet, M. G. Wallis, P. P. Slonimski, and G. Dujardin. 1993. The NAM1/MTF2 nuclear gene product is selectively required for the stability and/or processing of mitochondrial transcripts of theATP6 and of the mosaic COX1 and CYTB genes in Saccharomyces cerevisiae. Mol. Gen. Genet. 240:419–427.
  • Haffter, P., and T. D. Fox. 1992. Suppression of carboxy-terminal truncations of the yeast mitochondrial mRNA-specific translational activator PET122 by mutations in two new genes, MRP17 and PET127. Mol. Gen. Genet. 235:64–73.
  • Haffter, P., T. W. McMullin, and T. D. Fox. 1990. A genetic link between an mRNA-specific translational activator and the translation system in yeast mitochondria. Genetics 125:495–503.
  • Haffter, P., T. W. McMullin, and T. D. Fox. 1991. Functional interactions among two yeast mitochondrial ribosomal proteins and an mRNA-specific translational activator. Genetics 127:319–326.
  • Harlow, E., and D. Lane. 1988. Antibodies, a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Hartl, F.-U., N. Pfanner, D. W. Nicholson, and W. Neupert. 1989. Mitochondrial protein import. Biochim. Biophys. Acta 988:1–45.
  • He, F., S. W. Peltz, J. L. Donahue, M. Rosbash, and A. Jacobson. 1993. Stabilization and ribosome association of unspliced pre-mRNAs in a yeast upf1− mutant. Proc. Natl. Acad. Sci. USA 90:7034–7038.
  • Hill, J. E., A. M. Myers, T. J. Koerner, and A. Tzagoloff. 1986. Yeast/E. coli shuttle vectors with multiple unique restriction sites. Yeast 2:163–167.
  • Jacobson, A., and S. W. Peltz. 1996. Interrelationships of the pathways of mRNA decay and translation in eukaryotic cells. Annu. Rev. Biochem. 65:693–739.
  • Jauniaux, J.-C., L. A. Urrestarazu, and J.-M. Wiame. 1978. Arginine metabolism in Saccharomyces cerevisiae: subcellular localization of the enzymes. J. Bacteriol. 133:1096–1107.
  • Kloeckener-Gruissem, B., J. E. McEwen, and R. O. Poyton. 1988. Identification of a third nuclear protein-coding gene required specifically for post-transcriptional expression of the mitochondrial COX3 gene in Saccharomyces cerevisiae. J. Bacteriol. 170:1399–1402.
  • Kolodziej, P. A., and R. A. Young. 1991. Epitope tagging and protein surveillance. Methods Enzymol. 194:508–519.
  • Labouesse, M., P. Netter, and R. Schroeder. 1984. Molecular basis of the “box effect”, a maturase deficiency leading to the absence of splicing of two introns located in two split genes of yeast mitochondrial DNA. Eur. J. Biochem. 144:85–93.
  • Leeds, P., S. W. Peltz, A. Jacobson, and M. R. Culbertson. 1991. The product of the yeast UPF1 gene is required for rapid turnover of mRNAs containing a premature translational termination codon. Genes Dev. 5:2303–2314.
  • Margossian, S. P., H. Li, H. P. Zassenhaus, and R. A. Butow. 1996. The DExH Box protein Suv3p is a component of a yeast mitochondrial 3′-to-5′ exoribonuclease that suppresses group I intron toxicity. Cell 84:199–209.
  • Mason, T. L., and K. Sirum-Connolly. 1996. Expression of rRNA genes in mitochondria and chloroplasts, p. 421–449. In R. A. Zimmermann and A. E. Dahlberg (ed.), Ribosomal RNA: structure, evolution, processing and function in protein biosynthesis. CRC Press Inc., Boca Raton, Fla.
  • McMullin, T. W., and T. D. Fox. 1993. COX3 mRNA-specific translational activator proteins are associated with the inner mitochondrial membrane in Saccharomyces cerevisiae. J. Biol. Chem. 268:11737–11741.
  • McMullin, T. W., P. Haffter, and T. D. Fox. 1990. A novel small-subunit ribosomal protein of yeast mitochondria that interacts functionally with an mRNA-specific translational activator. Mol. Cell. Biol. 10:4590–4595.
  • Michaelis, U., A. Körte, and G. Rödel. 1991. Association of cytochrome b translational activator proteins with the mitochondrial membrane: implications for cytochrome b expression in yeast. Mol. Gen. Genet. 230:177–185.
  • Min, J. J., R. M. Heuertz, and H. P. Zassenhaus. 1993. Isolation and characterization of an NTP-dependent 3′ exoribonuclease from mitochondria of Saccharomyces cerevisiae. J. Biol. Chem. 268:7350–7357.
  • Min, J. J., and H. P. Zassenhaus. 1993. Identification of a protein complex that binds to a dodecamer sequence found at the 3′ ends of yeast mitochondrial mRNAs. Mol. Cell. Biol. 13:4167–4173.
  • Mittelmeier, T. M., and C. L. Dieckmann. 1990. CBP1 function is required for stability of hybrid cob-oli1 transcript in yeast mitochondria. Curr. Genet. 18:421–428.
  • Mittelmeier, T. M., and C. L. Dieckmann. 1993. In vivo analysis of sequences necessary for CBP1-dependent accumulation of cytochrome b transcripts in yeast mitochondria. Mol. Cell. Biol. 13:4203–4213.
  • Mueller, D. M., and G. S. Getz. 1986. Steady state analysis of mitochondrial RNA after growth of yeast Saccharomyces cerevisiae under catabolite repression and derepression. J. Biol. Chem. 261:11816–11822.
  • Müller, P. P., M. K. Reif, S. Zonghou, C. Sengstag, T. L. Mason, and T. D. Fox. 1984. A nuclear mutation that posttranscriptionally blocks accumulation of a yeast mitochondrial gene product can be suppressed by a mitochondrial gene rearrangement. J. Mol. Biol. 175:431–452.
  • Myers, A. M., L. K. Pape, and A. Tzagoloff. 1985. Mitochondrial protein synthesis is required for maintenance of intact mitochondrial genomes in Saccharomyces cerevisiae. EMBO J. 4:2087–2092.
  • Osinga, K. A., and H. F. Tabak. 1982. Initiation of transcription of genes for mitochondrial ribosomal RNA in yeast: comparison of the nucleotide sequence around the 5′-ends of both genes reveals a homologous stretch of 17 nucleotides. Nucleic Acids Res. 10:3617–3623.
  • Pinkham, J. L., A. M. Dudley, and T. L. Mason. 1994. T7 RNA polymerase-dependent expression of COXII in yeast mitochondria. Mol. Cell. Biol. 14:4643–4652.
  • Pon, L., and G. Schatz. 1991. Biogenesis of yeast mitochondria, p. 333–406. In J. R. Broach, J. R. Pringle, and E. W. Jones (ed.), The molecular and cellular biology of the yeast Saccharomyces: genome dynamics, protein synthesis and energetics, vol. 1. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Poutre, C. G., and T. D. Fox. 1987. PET111, a Saccharomyces cerevisiae nuclear gene required for translation of the mitochondrial mRNA encoding cytochrome c oxidase subunit II. Genetics 115:637–647.
  • Pulak, R., and P. Anderson. 1993. mRNA surveillance by the Caenorhabditis elegans smg genes. Genes Dev. 7:1885–1897.
  • Roise, D., and G. Schatz. 1988. Mitochondrial presequences. J. Biol. Chem. 263:4509–4511.
  • Rose, M. D., P. Novick, J. H. Thomas, D. Botstein, and G. R. Fink. 1987. A Saccharomyces cerevisiae genomic plasmid bank based on a centromere-containing shuttle vector. Gene 60:237–243.
  • Rose, M. D., F. Winston, and P. Hieter. 1988. Methods in yeast genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Shen, Z., and T. D. Fox. 1989. Substitution of an invariant nucleotide at the base of the highly conserved “530-loop” of 15S rRNA causes suppression of mitochondrial ochre mutations. Nucleic Acids Res. 17:4535–4539.
  • Simon, M., and G. Faye. 1984. Organization and processing of the mitochondrial oxi3/oli2 multigenic transcript in yeast. Mol. Gen. Genet. 196:266–274.
  • Staples, R. R., and C. L. Dieckmann. 1993. Generation of temperature-sensitive cbp1 strains of Saccharomyces cerevisiae by PCR mutagenesis and in vivo recombination: characteristics of the mutant strains imply that CBP1 is involved in stabilization and processing of cytochrome b pre-mRNA. Genetics 135:981–991.
  • Staples, R. R., and C. L. Dieckmann. 1994. Suppressor analyses of temperature-sensitive cbp1 strains of Saccharomyces cerevisiae: the produce of the nuclear gene SOC1 affects mitochondrial cytochrome b mRNA posttran-scriptionally. Genetics 138:565–575.
  • Steele, D. F., C. A. Butler, and T. D. Fox. 1996. Expression of a recoded nuclear gene inserted into yeast mitochondrial DNA is limited by mRNA-specific translational activation. Proc. Natl. Acad. Sci. USA 93:5253–5257.
  • Stepien, P. P., S. P. Margossian, D. Landsman, and R. A. Butow. 1992. The yeast nuclear gene suv3 affecting mitochondrial post-transcriptional processes encodes a putative ATP-dependent RNA helicase. Proc. Natl. Acad. Sci. USA 89:6813–6817.
  • Tyers, M., G. Tokiwa, R. Nash, and B. Futcher. 1992. The Cln3-Cdc28 kinase complex of S. cerevisiae is regulated by proteolysis and phosphorylation. EMBO J. 11:1773–1784.
  • Ulery, T. L., S. H. Jang, and J. A. Jaehning. 1994. Glucose repression ofyeast mitochondrial transcription: kinetics of derepression and role of nuclear genes. Mol. Cell. Biol. 14:1160–1170.
  • von Heijne, G. 1986. Mitochondrial targeting sequences may form amphiphi-lic helices. EMBO J. 5:1335–1342.
  • Weber, E. R., and C. L. Dieckmann. 1990. Identification of the CBP1 polypeptide in mitochondrial extracts from Saccharomyces cerevisiae. J. Biol. Chem. 265:1594–1600.
  • Wiesenberger, G., M. C. Costanzo, and T. D. Fox. 1995. Analysis of the Saccharomyces cerevisiae mitochondrial COX3 mRNA 5′-untranslated leader: translational activation and mRNA processing. Mol. Cell. Biol. 15:3291–3300.
  • Wiesenberger, G., and R. R. Staples. Unpublished data.
  • Yaffe, M. P. 1991. Analysis of mitochondrial function and assembly. Methods Enzymol. 194:627–643.
  • Zassenhaus, H. P., N. C. Martin, and R. A. Butow. 1984. Origins of transcripts of the yeast mitochondrial var1 gene. J. Biol. Chem. 259:6019–6027.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.