3
Views
16
CrossRef citations to date
0
Altmetric
Research Article

A Yeast TATA-Binding Protein Mutant That Selectively Enhances Gene Expression from Weak RNA Polymerase II Promoters

&
Pages 2888-2896 | Received 07 Nov 1996, Accepted 14 Feb 1997, Published online: 29 Mar 2023

REFERENCES

  • Auble, D. T., K. E. Hansen, C. G. F. Mueller, W. S. Lane, J. Thorner, and S. Hahn. 1994. Mot1, a global repressor of RNA polymerase II transcription, inhibits TBP binding to DNA by an ATP-dependent mechanism. Genes Dev. 8:1920–1934.
  • Bennetzen, J. L., and B. D. Hall. 1982. The primary structure of the Saccha-romyces cerevisiae gene for alcohol dehydrogenase I. J. Biol. Chem. 257:3018–3025.
  • Blair, W. S., H. Bogerd, and B. R. Cullen. 1994. Genetic analysis indicates that the human foamy virus Bel-1 protein contains a transcription activation domain of the acidic class. J. Virol. 68:3803–3808.
  • Blair, W. S., H. P. Bogerd, S. J. Madore, and B. R. Cullen. 1994. Mutational analysis of the transcription activation domain of RelA: identification of a highly synergistic minimal acidic activation module. Mol. Cell. Biol. 14:7226–7234.
  • Bogerd, H. P., R. A. Fridell, W. S. Blair, and B. R. Cullen. 1993. Genetic evidence that the Tat proteins of human immunodeficiency virus types 1 and 2 can multimerize in the eukaryotic cell nucleus. J. Virol. 67:5030–5034.
  • Chatterjee, S., and K. Struhl. 1995. Connecting a promoter-bound protein to TBP bypasses the need for a transcriptional activation domain. Nature 374:820–821.
  • Chen, J.-L., L. D. Attardi, C. P. Verrijzer, K. Yokomori, and R. Tjian. 1994. Assembly of recombinant TFIID reveals differential coactivator requirements for distinct transcriptional activators. Cell 79:93–105.
  • Chen, W., and K. Struhl. 1988. Saturation mutagenesis of a yeast his3 “TATA element”: genetic evidence for a specific TATA-binding protein. Proc. Natl. Acad. Sci. USA 85:2691–2695.
  • Chiang, C.-M., and R. G. Roeder. 1995. Cloning of an intrinsic human TFIID subunit that interacts with multiple transcriptional activators. Science 267:531–536.
  • Finley, R. L., Jr., S. Chen, J. Ma, P. Byrne, and R. W. West, Jr. 1990. Opposing regulatory functions of positive and negative elements in UASG control transcription of the yeast GAL genes. Mol. Cell. Biol. 10:5663–5670.
  • Fridell, R. A., L. S. Harding, H. P. Bogerd, and B. R. Cullen. 1995. Identification of a novel human zinc finger protein that specifically interacts with the activation domain of lentiviral Tat proteins. Virology 209:347–357.
  • Gietz, R. D., and A. Sugino. 1988. New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 74:527–534.
  • Goodrich, J. A., G. Cutler, and R. Tjian. 1996. Contacts in context: promoter specificity and macromolecular interactions in transcription. Cell 84:825–830.
  • Goodrich, J. A., T. Hoey, C. J. Thut, A. Admon, and R. Tjian. 1993. Dro-sophila TAFII40 interacts with both a VP16 activation domain and the basal transcription factor TFIIB. Cell 75:519–530.
  • Guarente, L., R. R. Yocum, and P. Gifford. 1982. A GAL10-CYC1 hybrid yeast promoter identifies the GAL4 regulatory region as an upstream site. Proc. Natl. Acad. Sci. USA 79:7410–7414.
  • Hernandez, N. 1993. TBP, a universal eukaryotic transcription factor? Genes Dev. 7:1291–1308.
  • Hoey, T., R. O. J. Weinzierl, G. Gill, J.-L. Chen, B. D. Dynlacht, and R. Tjian. 1993. Molecular cloning and functional analysis of Drosophila TAF110 reveal properties expected of coactivators. Cell 72:247–260.
  • Jacq, X., C. Brou, Y. Lutz, I. Davidson, P. Chambon, and L. Toro. 1994. Human TAFII30 is present in a distinct TFIID complex and is required for transcriptional activation by the estrogen receptor. Cell 79:107–117.
  • Kerr, L. D., L. J. Ransone, P. Wamsley, M. J. Schmitt, T. G. Boyer, Q. Zhou, A. J. Berk, and I. M. Verma. 1993. Association between proto-oncoprotein Rel and TATA-binding protein mediates transcriptional activation by NF-kB. Nature 365:412–419.
  • Kim, J. L., D. B. Nikolov, and S. K. Burley. 1993. Co-crystal structure of TBP recognizing the minor groove of a TATA element. Nature 365:520–527.
  • Kim, T. K., S. Hashimoto, R. J. Kelleher III, P. M. Flanagan, R. D. Korn-berg, M. Horikoshi, and R. G. Roeder. 1994. Effects of activation-defective TBP mutations on transcription initiation in yeast. Nature 369:252–255.
  • Kim, Y., J. H. Geiger, S. Hahn, and P. B. Sigler. 1993. Crystal structure of a yeast TBP/TATA-box complex. Nature 365:512–520.
  • Klages, N., and M. Strubin. 1995. Stimulation of RNA polymerase II transcription initiation by recruitment of TBP in vivo. Nature 374:822–823.
  • Klein, C., and K. Struhl. 1994. Increased recruitment of TATA-binding protein to the promoter by transcriptional activation domains in vivo. Science 266:280–282.
  • Lee, M., and K. Struhl. 1995. Mutations on the DNA-binding surface of TATA-binding protein can specifically impair the response to acidic activators in vivo. Mol. Cell. Biol. 15:5461–5469.
  • Lee, W. S., C. C. Kao, G. O. Bryant, X. Liu, and A. J. Berk. 1991. Adenovirus E1A activation domain binds the basic repeat in the TATA box transcription factor. Cell 67:365–376.
  • Lieberman, P. M., and A. J. Berk. 1991. The Zta trans-activator protein stabilizes TFIID association with promoter DNA by direct protein-protein interaction. Genes Dev. 5:2441–2454.
  • Mahadevan, S., and K. Struhl. 1990. TC, an unusual promoter element required for constitutive transcription of the yeast HIS3 gene. Mol. Cell. Biol. 10:4447–4455.
  • Martinez, E., Q. Zhou, N. D. L’Etoile, T. Oelgeschlager, A. J. Berk, and R. G. Roeder. 1995. Core promoter-specific function of a mutant transcription factor TFIID defective in TATA-box binding. Proc. Natl. Acad. Sci. USA 92:11864–11868.
  • May, M., G. Mengus, A.-C. Lavigne, P. Chambon, and I. Davidson. 1996. Human TAFII28 promotes transcriptional stimulation by activation function 2 of the retinoid X receptors. EMBO J. 15:3093–3104.
  • Nikolov, D. B., H. Chen, E. D. Halay, A. Hoffmann, R. G. Roeder, and S. K. Burley. 1996. Crystal structure of a human TATA box-binding protein/ TATA element complex. Proc. Natl. Acad. Sci. USA 93:4862–4867.
  • Ogden, J. E., C. Stanway, S. Kim, J. Mellor, A. J. Kingsman, and S. M. Kingsman. 1986. Efficient expression of the Saccharomyces cerevisiae PGK gene depends on an upstream activation sequence but does not require TATA sequences. Mol. Cell. Biol. 6:4335–4343.
  • Reddy, P., and S. Hahn. 1991. Dominant negative mutations in yeast TFIID define a bipartite DNA-binding region. Cell 65:349–357.
  • Roeder, R. G. 1991. The complexities of eukaryotic transcription initiation: regulation of preinitiation complex assembly. Trends Biochem. Sci. 16:402–411.
  • Schmitz, M. L., M. A. dos Santos Silva, H. Altmann, M. Czisch, T. A. Holak, and P. A. Baeuerle. 1994. Structural and functional analysis of the NF-kB p65 C terminus. J. Biol. Chem. 269:25613–25620.
  • Seipel, K., O. Georgiev, and W. Schaffner. 1992. Different activation domains stimulate transcription from remote (‘enhancer’) and proximal (‘promoter’) positions. EMBO J. 11:4961–4968.
  • Singer, V. L., C. R. Wobbe, and K. Struhl. 1990. A wide variety of DNA sequences can functionally replace a yeast TATA element for transcriptional activation. Genes Dev. 4:636–645.
  • Stargell, L. A., and K. Struhl. 1995. The TBP-TFIIA interaction in the response to acidic activators in vivo. Science 269:75–78.
  • Stargell, L. A., and K. Struhl. 1996. A new class of activation-defective TATA-binding protein mutants: evidence for two steps of transcriptional activation in vivo. Mol. Cell. Biol. 16:4456–4464.
  • Stringer, K. F., C. J. Ingles, and J. Greenblatt. 1990. Direct and selective binding of an acidic transcriptional activation domain to the TATA-box factor TFIID. Nature 345:783–786.
  • Taggart, A. K. P., and B. F. Pugh. 1996. Dimerization of TFIID when not bound to DNA. Science 272:1331–1333.
  • Tanaka, M. 1996. Modulation of promoter occupancy by cooperative DNA binding and activation-domain function is a major determinant of transcriptional regulation by activators in vivo. Proc. Natl. Acad. Sci. USA 93:4311–4315.
  • Tansey, W. P., and W. Herr. 1995. The ability to associate with activation domains in vitro is not required for the TATA box-binding protein to support activated transcription in vivo. Proc. Natl. Acad. Sci. USA 92:10550–10554.
  • Thut, C. J., J.-L. Chen, R. Klemm, and R. Tjian. 1995. p53 transcriptional activation mediated by coactivators TAFII40 and TAFII60. Science 267:100–104.
  • Truant, R., H. Xiao, C. J. Ingles, and J. Greenblatt. 1993. Direct interaction between the transcriptional activation domain of human p53 and the TATA box-binding protein. J. Biol. Chem. 268:2284–2287.
  • Verrijzer, C. P., K. Yokomori, J.-L. Chen, and R. Tjian. 1994. Drosophila TAFII150: similarity to yeast gene TSM-1 and specific binding to core promoter DNA. Science 264:933–941.
  • Wobbe, C. R., and K. Struhl. 1990. Yeast and human TATA-binding proteins have nearly identical DNA sequence requirements for transcription in vitro. Mol. Cell. Biol. 10:3859–3867.
  • Wu, Y., R. J. Reece, and M. Ptashne. 1996. Quantitation of putative activator-target affinities predicts transcriptional activating potentials. EMBO J. 15:3951–3963.
  • Xiao, H., J. D. Friesen, and J. T. Lis. 1995. Recruiting TATA-binding protein to a promoter: transcriptional activation without an upstream activator. Mol. Cell. Biol. 15:5757–5761.
  • Yamamoto, T., M. Horikoshi, J. Wang, S. Hasegawa, P. A. Weil, and R. G. Roeder. 1992. A bipartite DNA binding domain composed of direct repeats in the TATA box binding factor TFIID. Proc. Natl. Acad. Sci. USA 89:2844–2848.
  • Zawel, L., and D. Reinberg. 1995. Common themes in assembly and function of eukaryotic transcription complexes. Annu. Rev. Biochem. 64:533–561.
  • Zhou, Q., M. C. Schmidt, and A. J. Berk. 1991. Requirement for acidic amino acid residues immediately N-terminal to the conserved domain of Saccharomyces cerevisiae TFIID. EMBO J. 10:1843–1852.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.