6
Views
83
CrossRef citations to date
0
Altmetric
Research Article

p21CIP1 and Cdc25A: Competition between an Inhibitor and an Activator of Cyclin-Dependent Kinases

, , , &
Pages 4338-4345 | Received 10 Feb 1997, Accepted 29 Apr 1997, Published online: 29 Mar 2023

REFERENCES

  • Alexandrow, M. G., M. Kawabata, M. Aakre, and H. L. Moses. 1995. Overexpression of the c-Myc oncoprotein blocks the growth-inhibitory response but is required for the mitogenic effects of transforming growth factor. Proc. Natl. Acad. Sci. USA 92:3239–3243.
  • Aprelikova, O., Y. Xiong, and E. T. Liu. 1995. Both p16 and p21 families of cyclin-dependent kinase (CDK) inhibitors block the phosphorylation of cyclin-dependent kinases by the CDK-activating kinase. J. Biol. Chem. 270:18195–18197.
  • Chen, I. T., M. Akamatsu, M. L. Smith, F. D. T. Lung, D. Duba, P. P. Roller, A. J. Fornace, and P. M. O’Connor. 1996. Characterization of p21(Cip1/Waf1) peptide domains required for cyclin E/cdk2 and PCNA interaction. Oncogene 12:595–607.
  • Chen, J., P. K. Jackson, M. W. Kirschner, and A. Dutta. 1995. Separate domains of p21 involved in the inhibition of cdk kinase and PCNA. Nature 374:386–388.
  • Chen, J., P. Saha, S. Kornbluth, B. Dynlacht, and A. Dutta. 1996. Cyclin-binding motifs are essential for the function of p21CIP1. Mol. Cell. Biol. 16:4673–4682.
  • Deng, C. X., P. M. Zhang, J. W. Harper, S. J. Elledge, and P. Leder. 1995. Mice lacking p21(cip1/waf1) undergo normal development, but are defective in G1 checkpoint control. Cell 82:675–684.
  • Dulic, V., E. Lees, and S. Reed. 1992. Association of human cyclin E with periodic G1-S phase protein kinase. Science 257:1958–1961.
  • el Deiry, W. S., J. W. Harper, P. M. O’Connor, V. E. Velculescu, C. E. Canman, J. Jackman, J. A. Pietenpol, M. Burrell, D. E. Hill, Y. S. Wang et al. 1994. Waf1/CIP1 is induced in p53-mediated g(1) arrest and apoptosis. Cancer Res. 54:1169–1174.
  • Elledge, S. J. 1996. Cell cycle checkpoints: preventing an identity crisis. Science 274:1664–1672.
  • Evans, T., E. T. Rosenthal, J. Youngblom, D. Distel, and T. Hunt. 1983. Cyclin: a protein specified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division. Cell 33:389–396.
  • Galaktionov, K., and D. Beach. 1991. Specific activation of cdc25 tyrosine phosphatases by B-type cyclins: evidence for multiple roles of mitotic cyclins. Cell 67:1181–1194.
  • Galaktionov, K., X. Chen, and D. Beach. 1996. Cdc25A cell-cycle phospha-tase as a target of c-myc. Nature 382:511–517.
  • Galaktionov, K., A. Lee, J. Eckstein, G. Draetta, J. Meckler, M. Loda, and D. Beach. 1996. CDC25 phosphatase as potential human oncogene. Science 269:1575–1577.
  • Gu, Y., J. Rosenblatt, and D. O. Morgan. 1992. Cell cycle regulation of CDK2 activity by phosphorylation of Thr160 and Tyr15. EMBO J. 11:3995–4005.
  • Hannon, G. J., D. Demetrick, and D. Beach. 1993. Isolation of the Rb-related p130 through its interaction with CDK2 and cyclins. Genes Dev. 7:2378–2391.
  • Hermeking, H., J. O. Funk, M. Reichert, J. W. Rllwart, and D. Eick. 1995. Abrogation of p53-induced cell cycle arrest by c-Myc: evidence for an inhibitor of p21-WAF1/CIP1/SDI1. Oncogene 11:1409–1415.
  • Hoffmann, I., P. Clarke, M. Marcote, E. Karsenti, and G. Draetta. 1993. Phosphorylation and activation of human cdc25C by cdc2-cyclin B and its involvement in the self-amplification of MPF at mitosis. EMBO J. 12:53–63.
  • Hoffmann, I., G. Draetta, and E. Karsenti. 1994. Activation of the phosphatase activity of human cdc25A by a cdc2-cyclin E dependent phosphorylation at the G1-S transition. EMBO J. 13:4302–4310.
  • Jinno, S., K. Suto, A. Nagata et al. 1994. cdc25A is a novel phosphatase functioning early in the cell cycle. EMBO J. 13:1549–1556.
  • King, R. W., R. J. Deshaies, J. M. Peters, and M. W. Kirschner. 1996. How proteolysis drives the cell cycle. Science 274:1652–1659.
  • Krek, W., G. Xu, and D. M. Livingstone. 1995. Cyclin A-kinase regulation of E2F-1 DNA binding function underlies suppression of an S phase checkpoint. Cell 83:1149–1158.
  • Leiter, L. M., J. Chen, T. Marathe, M. Tanaka, and A. Dutta. 1996. Loss of transactivation and transrepression function, and not RPA binding, alters growth suppression by p53. Oncogene 12:2661–2668.
  • Li, R., S. Waga, G. J. Hannon, D. Beach, and B. Stillman. 1994. Differential effects by the p21 cdk inhibitor on PCNA-dependent DNA replication and repair. Nature 371:534–537.
  • Li, Y., C. Graham, S. Lacy, A. M. V. Duncan, and P. Whyte. 1993. The adenovirus E1A-associated 130 kD protein is encoded by a member of the retinoblastoma gene family and physically interacts with cyclins A and E. Genes Dev. 7:2366–2377.
  • Lin, J., C. Reichner, X. Wu, and A. J. Levine. 1996. Analysis ofwild-type and mutant p21WAF-1 gene activities. Mol. Cell. Biol. 16:1786–1793.
  • Luo, Y., J. Hurwitz, and J. Massague. 1995. Cell-cycle inhibition by independent cdk and PCNA binding domains in p21-CIP1. Nature 375:159–161.
  • Mayer, B. J., H. Hirai, and R. Sakai. 1995. Evidence that SH2 domains promote processive phosphorylation by protein tyrosine kinase. Curr. Biol. 5:296–305.
  • Millar, J. B., C. H. McGowan, G. Lenaers, R. Jones, and P. Russel. 1991. p80cdc25 mitotic inducer is the tyrosine phosphatase that activates p34cdc2 kinase in fission yeast. EMBO J. 10:4301–4309.
  • Morgan, D. O. 1995. Principles of CDK regulation. Nature 374:131–134.
  • Nagata, A., M. Igarashi, S. S. K. Jinno, and H. Okayama. 1991. An additional homolog of the fission yeast cdc25+ gene occurs in humans and is highly expressed in some cancer cells. New Biol. 3:959–967.
  • Nasmyth, K. 1996. Viewpoint: putting the cell cycle in order. Science 274:1643–1645.
  • Ohtsubo, M., and J. M. Roberts. 1993. Cyclin-dependent regulation of G1 in mammalian fibroblast. Science 259:1908–1912.
  • Russo, A. A., P. D. Jeffry, A. K. Patten, J. Massague, and N. P. Pavletich. 1996. Crystal structure of the p27(Kip1) cyclin-dependent-kinase inhibitor bound to the cyclin A-Cdk2 complex. Nature 382:325–331.
  • Sandhu, K., S. I. Reed, H. Richardson, and P. Russell. 1990. Human homolog of fission yeast cdc25 mitotic inducer is predominantly expressed in G2. Proc. Natl. Acad. Sci. USA 87:5139–5143.
  • Sherr, J. 1996. Cancer cell cycle. Science 274:1672–1677.
  • Shivji, M. K., S. T. Grey, U. P. Strausfeld, R. D. Wood, and J. J. Blow. 1994. Cip1 inhibits DNA replication but not PCNA-dependent nucleotide excision-repair. Curr. Biol. 4:1062–1068.
  • Silberman, E. D., and B. J. Mayer. Unpublished data.
  • Solomon, M., T. Lee, and M. Kirschner. 1992. Role of phosphorylation in p34cdc2 activation: identification of an activating kinase. Mol. Biol. Cell. 3:13–27.
  • Steiner, P., A. Philipp, J. Lukas, D. Godden-Kent, M. Pagano, S. Mittnacht, J. Bartek, and M. Eilers. 1995. Identification of a Myc-dependent step during the formation of active G1 cyclin-cdk complexes. EMBO J. 14:4814–4826.
  • Stillman, B. 1996. Cell cycle control of DNA replication. Science 274:1659–1664.
  • Strausfeld, U. P., M. Howell, R. Rempel, J. L. Maller, T. Hunt, and J. J. Blow. 1994. Cip1 blocks the initiation of DNA replication in Xenopus extracts by inhibition of cyclin-dependent kinases. Curr. Biol. 4:876–883.
  • Terada, Y., M. Tatsuka, S. Jinno, and H. Okayama. 1995. Requirement for tyrosine phosphorylation of Cdk4 in G1 arrest induced by ultraviolet irradiation. Nature 376:358–362.
  • Waga, S., G. J. Hannon, D. Beach, and B. Stillman. 1994. The p21 inhibitor of cyclin-dependent kinases controls DNA replication by interaction with PCNA. Nature 369:574–578.
  • Zheng, X. F., and J. V. Ruderman. 1993. Functional analysis of the P box, a domain in cyclin B required for the activation of Cdc25. Cell 75:155–164.
  • Zhu, L., E. Harlow, and B. D. Dynlacht. 1995. p107 uses a p21-related domain to bind cyclin/cdk2 and regulate interactions with E2F. Genes Dev. 9:1740–1752.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.