6
Views
20
CrossRef citations to date
0
Altmetric
Research Article

The Mauriceville Retroplasmid Reverse Transcriptase Initiates cDNA Synthesis De Novo at the 3′ End of tRNAs

&
Pages 4526-4535 | Received 29 Jan 1997, Accepted 27 May 1997, Published online: 29 Mar 2023

REFERENCES

  • Akins, R. A., D. M. Grant, L. L. Stohl, D. A. Bottorff, F. E. Nargang, and A. M. Lambowitz. 1988. Nucleotide sequence of the Varkud mitochondrial plasmid of Neurospora and synthesis of a hybrid transcript with a 5′ leader derived from mitochondrial RNA. J. Mol. Biol. 204:1–25.
  • Akins, R. A., R. L. Kelley, and A. M. Lambowitz. 1986. Mitochondrial plasmids of Neurospora: integration into mitochondrial DNA and evidence for reverse transcription in mitochondria. Cell 47:505–516.
  • Akins, R. A., R. L. Kelley, and A. M. Lambowitz. 1989. Characterization of mutant mitochondrial plasmids of Neurospora spp. that have incorporated tRNAs by reverse transcription. Mol. Cell. Biol. 9:678–691.
  • Blumenthal, T., and G. G. Carmichael. 1979. RNA replication: function and structure of Qb-replicase. Annu. Rev. Biochem. 48:525–548.
  • Chen, B., and A. M. Lambowitz. De novo and primer-mediated initiation of cDNA synthesis by the Mauriceville retroplasmid reverse transcriptase involve recognition of a 3′ CCA sequence. J. Mol. Biol., in press.
  • Chiang, C.-C., J. C. Kennell, L. A. Wanner, and A. M. Lambowitz. 1994. A mitochondrial retroplasmid integrates into mitochondrial DNA by a novel mechanism involving the synthesis of a hybrid cDNA and homologous recombination. Mol. Cell. Biol. 14:6419–6432.
  • Chiang, C.-C., and A. M. Lambowitz. Unpublished data.
  • Collins, R. A., L. L. Stohl, M. D. Cole, and A. M. Lambowitz. 1981. Characterization of a novel plasmid DNA found in mitochondria of N. crassa. Cell 24:443–452.
  • Davis, R. H., and F. J. de Serres. 1970. Genetic and microbiological research techniques for Neurospora crassa. Methods Enzymol. 17A:79–143.
  • Deininger, P. L. 1989. SINEs: short interspersed repeated DNA elements in higher eucaryotes, p. 619–636. In D. E. Berg and M. M. Howe (ed.), Mobile DNA. ASM Press, Washington, D.C.
  • Eickbush, T. H. 1994. Origin and evolutionary relationships of retroelements, p. 121–157. In S. S. Morse (ed.), The evolutionary biology of viruses. Raven Press, New York, N.Y.
  • Feng, Q., J. V. Moran, H. H. Kazazian, Jr., and J. D. Boeke. 1996. Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition. Cell 87:905–916.
  • Grosshans, C. A., and T. R. Cech. 1991. A hammerhead ribozyme allows synthesis of a new form of the Tetrahymena ribozyme homogeneous in length with a 3′ end blocked for transesterification. Nucleic Acids Res. 19:3875–3880.
  • Guo, Q., and A. M. Lambowitz. 1992. A tyrosyl-tRNA synthetase binds specifically to the group I intron catalytic core. Genes Dev. 6:1357–1372.
  • Heckman, J. E., B. Alzner-Deweerd, and U. L. RajBhandary. 1979. Interesting and unusual features in the sequence of Neurospora crassa mitochondrial tyrosine transfer RNA. Proc. Natl. Acad. Sci. USA 76:717–721.
  • Heckman, J. E., J. Sarnoff, B. Alzner-Deweerd, S. Yin, and U. L. RajBhanary. 1980. Novel features in the genetic code and codon reading patterns in Neurospora crassa mitochondria based on sequences of six mitochondrial tRNAs. Proc. Natl. Acad. Sci. USA 77:3159–3163.
  • Hutchison, C. A., III, S. C. Hardies, D. D. Loeb, W. R. Shehee, and M. H. Edgell. 1989. LINEs and related retroposons: long interspersed repeated sequences in the eucaryotic genome, p. 593–617. In D. E. Berg and M. M. Howe (ed.), Mobile DNA. ASM Press, Washington, D.C.
  • Kennell, J. C., and A. M. Lambowitz. Unpublished data.
  • Kennell, J. C., H. Wang, and A. M. Lambowitz. 1994. The Mauriceville plasmid of Neurospora spp. uses novel mechanisms for initiating reverse transcription in vivo. Mol. Cell. Biol. 14:3094–3107.
  • Kornberg, A., and T. A. Baker. 1992. DNA replication, 2nd ed. W. H. Freeman, New York, N.Y.
  • Kuiper, M. T. R., and A. M. Lambowitz. 1988. A novel reverse transcriptase activity associated with mitochondrial plasmids of Neurospora. Cell 55:693–704.
  • Kuiper, M. T. R., J. R. Sabourin, and A. M. Lambowitz. 1990. Identification of the reverse transcriptase encoded by the Mauriceville and Varkud mitochondrial plasmids of Neurospora. J. Biol. Chem. 265:6936–6943.
  • Lambowitz, A. M. 1979. Preparation and analysis of mitochondrial ribosomes. Methods Enzymol. 59:421–433.
  • Lambowitz, A. M., R. J. LaPolla, and R. A. Collins. 1979. Mitochondrial ribosome assembly in Neurospora. Two-dimensional gel electrophoretic analysis of mitochondrial ribosomal proteins. J. Cell Biol. 82:17–31.
  • Luan, D. D., M. H. Korman, J. L. Jakubczak, and T. H. Eickbush. 1993. Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Cell 72:595–605.
  • Maizels, N., and A. M. Weiner. 1994. Phylogeny from function: evidence from the molecular fossil record that tRNA originated in replication, not translation. Proc. Natl. Acad. Sci. USA 91:6729–6734.
  • Mathews, D. H., A. R. Banerjee, D. D. Luan, T. H. Eickbush, and D. H. Turner. 1997. Secondary structure model of the RNA recognized by the reverse transcriptase from the R2 retrotransposable element. RNA 3:1–16.
  • Michel, F., K. Umesono, and H. Ozeki. 1989. Comparative and functional anatomy of group II catalytic introns—a review. Gene 82:5–30.
  • Miller, W. A., J. J. Bujarski, T. W. Dreher, and T. C. Hall. 1986. Minusstrand initiation by brome mosaic virus replicase within the 3′ tRNA-like structure of native and modified RNA templates. J. Mol. Biol. 187:537–546.
  • Mohr, S., and A. M. Lambowitz. Unpublished data.
  • Monroe, S. S., and S. Schlesinger. 1983. RNAs from two independently isolated defective interfering particles of Sindbis virus contain a cellular tRNA sequence at their 5′ ends. Proc. Natl. Acad. Sci. USA 80:3279–3283.
  • Munishkin, A. V., L. A. Voronin, and A. B. Chetverin. 1988. An in vivo recombinant RNA capable of autocatalytic synthesis by Qb replicase. Nature 333:473–475.
  • Nargang, F. E., J. B. Bell, L. L. Stohl, and A. M. Lambowitz. 1984. The DNA sequence and genetic organization of a Neurospora mitochondrial plasmid suggest a relationship to introns and mobile elements. Cell 38:441–453.
  • Okada, N. 1991. SINEs: short interspersed repeated elements of the eukaryotic genome. Trends Ecol. Evol. 6:358–361.
  • Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Sanger, F., S. Nicklen, and A. R. Coulson. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74:5463–5467.
  • Wang, H., J. C. Kennell, M. T. R. Kuiper, J. R. Sabourin, R. Saldanha, and A. M. Lambowitz. 1992. The Mauriceville plasmid of Neurospora crassa: characterization of a novel reverse transcriptase that begins cDNA synthesis at the 3′ end of template RNA. Mol. Cell. Biol. 12:5131–5144.
  • Wang, H., and A. M. Lambowitz. 1993. The Mauriceville plasmid reverse transcriptase can initiate cDNA synthesis de novo and may be related to reverse transcriptase and DNA polymerase progenitor. Cell 75:1071–1081.
  • Wang, H., and A. M. Lambowitz. 1993. Reverse transcription of the Mauriceville plasmid of Neurospora. Lack of ribonuclease H activity associated with the reverse transcriptase and possible use of mitochondrial ribonuclease H. J. Biol. Chem. 268:18951–18959.
  • Weiner, A. M., P. L. Deininger, and A. Efstratiadis. 1986. Nonviral retroposons: genes, pseudogenes, and transposable elements generated by the reverse flow of genetic information. Annu. Rev. Biochem. 55:631–661.
  • Weiner, A. M., and N. Maizels. 1987. tRNA-like structures tag the 3′ ends of genomic RNA molecules for replication: implications for the origin of protein synthesis. Proc. Natl. Acad. Sci. USA 84:7383–7387.
  • Xiong, Y., and T. H. Eickbush. 1990. Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J. 9:3353–3362.
  • Zimmerly, S., H. Guo, P. S. Perlman, and A. M. Lambowitz. 1995. Group II intron mobility occurs by target DNA-primed reverse transcription. Cell 82:545–554.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.