11
Views
156
CrossRef citations to date
0
Altmetric
Research Article

G Triplets Located throughout a Class of Small Vertebrate Introns Enforce Intron Borders and Regulate Splice Site Selection

&
Pages 4562-4571 | Received 19 Mar 1997, Accepted 23 May 1997, Published online: 29 Mar 2023

REFERENCES

  • Basu, A., B. Dong, A. R. Krainer, and C. Howe. 1997. The intercisternal A-particle proximal enhancer-binding protein activates transcription and is identical to the RNA- and DNA-binding protein p54nrb/NonO. Mol. Cell. Biol. 17:677–686.
  • Berget, S. M. 1995. Exon recognition in vertebrate splicing. J. Biol. Chem. 270:2411–2414.
  • Black, D. L. 1992. Activation of c-src neuron-specific splicing by an unusual RNA element in vivo and in vitro. Cell 69:795–807.
  • Black, D. L. 1995. Finding splice sites within a wilderness of RNA. RNA 1:763–771.
  • Burd, C. G., and G. Dreyfuss. 1994. RNA binding of hnRNP A1: significance of hnRNP A1 high-affinity binding sites in pre-mRNA splicing. EMBO J. 13:1197–1204.
  • Caputi, M., G. Casari, S. Guenz, R. Tagliabue, A. Sidoli, C. A. Melo, and F. E. Baralle. 1994. A novel bipartite splicing enhancer modulates the differential processing of the human fibronectin EDA exon. Nucleic Acids Res. 22:1018–1022.
  • Carlo, T., D. A. Sterner, and S. M. Berget. 1996. An intron splicing enhancer containing a G-rich repeat facilitates inclusion of a vertebrate micro-exon. RNA 2:342–353.
  • Chabot, B., M. Blanchette, I. Lapierre, and H. La Branche. 1997. An intron element modulating 5′ splice site selection in the hnRNP A1 pre-mRNA interacts with hnRNP A1. Mol. Cell. Biol. 17:1776–1786.
  • Conrad, R., K. Lea, and T. Blumenthal. 1995. SL1 trans-splicing specified by AU-rich synthetic RNA inserted at the 5′ end of Caenorhabditis elegans pre-mRNA. RNA 1:164–170.
  • Crispino, J. D., B. J. Blencowe, and P. A. Sharp. 1994. Complementation by SR proteins of pre-mRNA splicing reactions depleted of U1snRNP. Science 265:1866–1869.
  • Dirksen, W. P., R. K. Hampson, S. Qiang, and F. M. Rottman. 1994. A purine-rich exon sequence enhances alternative splicing of bovine growth hormone pre-mRNA. J. Biol. Chem. 269:6431–6436.
  • Engelbrecht, J., S. Knudsen, and S. Brunak. 1992. G1C-rich tract in 5′ end of human introns. J. Mol. Biol. 227:108–113.
  • Goodall, G. J., and W. Filipowicz. 1989. The AU-rich sequences present in the introns of plant nuclear pre-mRNAs are required for splicing. Cell 58:473–483.
  • Guo, M., P. C. H. Lo, and S. M. Mount. 1993. Species-specific signals for the splicing of a short Drosophila intron in vitro. Mol. Cell. Biol. 13:1104–1118.
  • Hawkins, J. D. 1988. A survey on intron and exon lengths. Nucleic Acids Res. 16:9893–9908.
  • Huh, G. S., and R. O. Hynes. 1993. Elements regulating an alternatively spliced exon of the rat fibronectin gene. Mol. Cell. Biol. 13:5301–5314.
  • Huh, G. S., and R. O. Hynes. 1994. Regulation of alternative pre-mRNA splicing by a novel repeated hexanucleotide element. Genes Dev. 8:1561–1574.
  • Humphrey, M. B., J. Bryan, T. A. Cooper, and S. M. Berget. 1995. A 32-nucleotide exon-splicing enhancer regulates usage of competing 5′ splice sites in a differential internal exon. Mol. Cell. Biol. 15:3979–3988.
  • Kennedy, C. F., and S. M. Berget. 1997. Pyrimidine tracts between the 59 splice site and branch point facilitate splicing and recognition of a small Drosophila intron. Mol. Cell. Biol. 17:2774–2780.
  • Lamond, A. I., M. M. Konarska, and P. A. Sharp. 1987. A mutational analysis of spliceosome assembly: evidence for splice site collaboration during spliceosome formation. Genes Dev. 1:532–543.
  • Lavigueur, A., H. La Branche, A. R. Kornblihtt, and B. Chabot. 1993. A splicing enhancer in the human fibronectin alternate ED1 exon interacts with SR proteins and stimulates U2 snRNP binding. Genes Dev. 7:2405–2417.
  • Lou, H., A. J. McCullough, and M. A. Schuler. 1993. 3′ splice site selection in dicot plant nuclei is position dependent. Mol. Cell. Biol. 13:4485–4493.
  • Lou, H., Y. Yang, G. J. Cote, S. M. Berget, and R. F. Gagel. 1995. An intron enhancer containing a 5′ splice site sequence in the human calcitonin/calci-tonin gene-related peptide gene. Mol. Cell. Biol. 15:7135–7142.
  • Lou, H., R. F. Gagel, and S. M. Berget. 1996. An intron enhancer recognized by splicing factors activates polyadenylation. Genes Dev. 10:208–219.
  • MacMillan, A. M., P. S. McCaw, J. D. Crispino, and P. A. Sharp. 1997. SC35-mediated reconstitution of splicing in U2AF-depleted nuclear extract. Proc. Natl. Acad. Sci. USA 94:133–136.
  • Matunis, M. J., J. Xing, and G. Dreyfuss. 1994. The hnRNP F protein: unique primary structure, nucleic acid-binding properties, and subcellular localization. Nucleic Acids Res. 22:1059–1067.
  • McCullough, A. J., H. Lou, and M. A. Schuler. 1993. Factors affecting authentic 5′ splice site selection in plant nuclei. Mol. Cell. Biol. 13:1323–1331.
  • McCullough, A. J., and M. A. Schuler. 1993. AU-rich intronic elements affect pre-mRNA 5′ splice site selection in Drosophila melanogaster. Mol. Cell. Biol. 13:7689–7697.
  • McCullough, A. J., C. E. Baynton, and M. A. Schuler. 1996. Interactions across exons can influence splice site recognition in plant nuclei. Plant Cell 8:2295–2307.
  • Min, H., R. C. Chan, and D. L. Black. 1995. The generally expressed hnRNP F is involved in a neural-specific pre-mRNA splicing event. Genes Dev. 9:2659–2671.
  • Mount, S. M., C. Burks, G. Hertz, G. D. Stormo, O. White, and C. Fields. 1992. Splicing signals in Drosophila: intron size, information content and consensus sequences. Nucleic Acids Res. 20:4255–4262.
  • Nakai, K., and H. Sakamoto. 1994. Construction of a novel database containing aberrant splicing mutations of mammalian genes. Gene 141:171–177.
  • Nussinov, R. 1988. Conserved quartets near 5′ intron junctions in primate nuclear pre-mRNA. J. Theor. Biol. 133:73–84.
  • Nussinov, R. 1989. Conserved signals around 5′ splice sites in eukaryotic nuclear precursor RNAs: G-runs are frequent in the introns and C in the exons near both 5′ and 3′ splice sites. J. Biomol. Struct. Dyn. 6:985–1000.
  • Ramchatesingh, J., A. M. Zahler, K. M. Neugebauer, M. B. Roth, and T. A. Cooper. 1995. A subset of SR proteins activates splicing of the cardiac troponin T alternative exon by direct interactions with an exonic enhancer. Mol. Cell. Biol. 15:4898–4907.
  • Reed, R. 1995. Initial splice site pairing during pre-mRNA splicing. Curr. Opin. Genet. Dev. 6:215–229.
  • Robberson, B. L., G. J. Cote, and S. M. Berget. 1990. Exon definition may facilitate splice site selection in RNAs with multiple exons. Mol. Cell. Biol. 10:84–94.
  • Ryan, K. J., and T. A. Cooper. 1996. Muscle-specific splicing enhancers regulate inclusion of the cardiac troponin T alternative exon in embryonic skeletal muscle. Mol. Cell. Biol. 16:4014–4023.
  • Sirand-Pugnet, P., P. Durosay, E. Brody, and J. Marie. 1995. An intronic (A/U)GGG repeat enhances the splicing of an alternative intron of the chicken b-tropomyosin gene. Nucleic Acids Res. 23:3501–3507.
  • Solovyev, V. V., A. A. Salamov, and C. B. Lawrence. 1994. Predicting internal exons by oligonucleotide composition and discriminant analysis of spliceable open reading frames. Nucleic Acids Res. 22:5156–5163.
  • Staknis, D., and R. Reed. 1994. SR proteins promote the first specific recognition of pre-mRNA and are present together with the U1 small nuclear ribonucleoprotein particle in a general splicing enhancer complex. Mol. Cell. Biol. 14:7670–7682.
  • Sterner, D. A., T. Carlo, and S. M. Berget. 1996. Architectural limits on split genes. Proc. Natl. Acad. Sci. USA 93:15081–15085.
  • Sun, Q., A. Mayeda, R. K. Hampson, A. R. Krainer, and F. M. Rottman. 1993. General splicing factor SF2/ASF promotes alternative splicing by binding to an exonic splicing enhancer. Genes Dev. 7:2598–2608.
  • Tacke, R., and J. L. Manley. 1995. The human splicing factors ASF/SF2 and SC35 possess distinct, functionally significant RNA binding specificities. EMBO J. 14:3540–3551.
  • Tacke, R., and J. L. Manley. 1997. Sequence-specific RNA binding by an SR protein requires RS domain phosphorylation: creation of an SRp40-specific splicing enhancer. Proc. Natl. Acad. Sci. USA 94:1148–1153.
  • Talerico, M., and S. M. Berget. 1990. Effect of 5′ splice site mutations on splicing of the preceding intron. Mol. Cell. Biol. 10:6299–6305.
  • Talerico, M., and S. M. Berget. 1993. Intron definition in splicing of small Drosophila introns. Mol. Cell. Biol. 14:3434–3445.
  • Tanaka, K., A. Watakabe, and Y. Shimura. 1994. Polypurine sequences within a downstream exon function as a splicing enhancer. Mol. Cell. Biol. 14:1347–1354.
  • Tarn, W. Y., and J. A. Steitz. 1994. SR proteins can compensate for the loss of U1snRNP functions in vitro. Genes Dev. 8:2707–2717.
  • Watakabe, A., K. Tanaka, and Y. Shimura. 1993. The role of exon sequences in splice site selection. Genes Dev. 7:407–418.
  • Wise, J. A. Personal communication.
  • Xu, R., J. Teng, and T. A. Cooper. 1993. The cardiac troponin T alternative exon contains a novel purine-rich positive splicing element. Mol. Cell. Biol. 13:3660–3674.
  • Yeakley, J. M., F. Hedjran, J.-P. Morfin, N. Merillat, M. G. Rosenfeld, and R. B. Emeson. 1993. Control of calcitonin/calcitonin gene-related peptide pre-mRNA processing by constitutive exon and intron elements. Mol. Cell. Biol. 13:5999–6011.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.