9
Views
100
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Novel IκBα Proteolytic Pathway in WEHI231 Immature B Cells

, &
Pages 19-29 | Received 22 Aug 1997, Accepted 08 Oct 1997, Published online: 28 Mar 2023

REFERENCES

  • Alkalay, I., A. Yaron, A. Hatzubai, A. Orian, A. Ciechanover, and Y. Ben-Neriah 1995. Stimulation-dependent IκBα phosphorylation marks the NF-κB inhibitor for degradation via the ubiquitin-proteasome pathway. Proc. Natl. Acad. Sci. USA 92: 10599–10603.
  • Andrews, N. C., and D. V. Faller 1991. A rapid micropreparation technique for extraction of DNA-binding proteins from limiting numbers of mammalian cells. Nucleic Acids Res. 19: 2499.
  • Arenzana-Seisdedos, F., J. Thompson, M. S. Rodriguez, F. Bachelerie, D. Thomas, and R. T. Hay 1995. Inducible nuclear expression of newly synthesized IκBα negatively regulates DNA-binding and transcriptional activities of NF-κB. Mol. Cell. Biol. 15: 2689–2696.
  • Baeuerle, P. A., and D. Baltimore 1996. NF-κB—ten years after. Cell 87: 13–20.
  • Baldwin, A. S. J. 1996. The NF-κB and IκB proteins: new discoveries and insights. Annu. Rev. Immunol. 14: 649–683.
  • Ballard, D. W., W. H. Walker, S. Doerre, P. Sista, J. A. Molitor, E. P. Dixon, N. J. Peffer, M. Hannink, and W. C. Greene 1990. The v-rel oncogene encodes a κB enhancer binding protein that inhibits NF-κB function. Cell 63: 803–814.
  • Beg, A. A., and D. Baltimore 1996. An essential role of NF-κB in preventing TNFα-induced cell death. Science 274: 782–784.
  • Bond, J. S., and P. E. Butler 1987. Intracellular proteases. Annu. Rev. Biochem. 56: 333–364.
  • Brockman, J. A., D. C. Scherer, T. A. McKinsey, S. M. Hall, X. Qi, W. Y. Lee, and D. W. Ballard 1995. Coupling of a signal response domain in IκBα to multiple pathways for NF-κB activation. Mol. Cell. Biol. 15: 2809–2818.
  • Brown, K., S. Gerstberger, L. Carlson, G. Franzoso, and U. Siebenlist 1995. Control of IκBα proteolysis by site-specific, signal-induced phosphorylation. Science 267: 1485–1488.
  • Bunce, C. M., J. A. Thick, J. M. Lord, D. Mills, and G. Brown 1988. A rapid procedure for isolating hemopoietic cell nuclei. Anal. Biochem. 175: 67–73.
  • Chen, Z., J. Hagler, V. J. Palombella, F. Melandri, D. Scherer, D. Ballard, and T. Maniatis 1995. Signal-induced site-specific phosphorylation targets IκBα to the ubiquitin-proteasome pathway. Genes Dev. 9: 1586–1597.
  • Chiao, P. J., S. Miyamoto, and I. M. Verma 1994. Autoregulation of IκBα activity. Proc. Natl. Acad. Sci. USA 91: 28–32.
  • Ciechanover, A. 1994. The ubiquitin-proteasome proteolytic pathway. Cell 79: 13–21.
  • Croall, D. E., and G. N. Dermartino 1991. Calcium-activated neutral protease (calpain) system: structure, function, and regulation. Physiol. Rev. 71: 813–847.
  • DiDonato, J., F. Mercurio, C. Rosette, J. Wu-Li, H. Suyang, S. Ghosh, and M. Karin 1996. Mapping of the inducible IκB phosphorylation sites that signal its ubiquitination and degradation. Mol. Cell. Biol. 16: 1295–1304.
  • Doi, T. S., T. Takahashi, O. Taguchi, T. Azuma, and Y. Obata 1997. NF-κB RelA-deficient lymphocytes: normal development of T cells and B cells, impaired production of IgA and IgG1 and reduced proliferative responses. J. Exp. Med. 185: 953–961.
  • Fenteany, G., R. F. Standaert, W. S. Lane, S. Choi, E. J. Corey, and S. L. Schreiber 1995. Inhibition of proteasome activities and subunit-specific amino-terminal threonine modification by lactacystin. Science 268: 726–731.
  • Field, J., J. Nikawa, D. Broek, B. MacDonald, L. Rodgers, I. A. Wilson, R. A. Lerner, and M. Wigler 1988. Purification of a RAS-responsive adenylyl cyclase complex from Saccharomyces cerevisiae by use of an epitope addition method. Mol. Cell. Biol. 8: 2159–2165.
  • Good, L., and S. C. Sun 1996. Persistent activation of NF-κB/Rel by human T-cell leukemia virus type 1 tax involves degradation of IκBβ. J. Virol. 70: 2730–2735.
  • Griscavage, J. M., S. Wilk, and L. J. Ignarro 1995. Serine and cysteine proteinase inhibitors prevent nitric oxide production by activated macrophages by interfering with transcription of the inducible NO synthase gene. Biochem. Biophys. Res. Commun. 215: 721–729.
  • Grumont, R. J., I. B. Richardson, C. Gaff, and S. Gerondakis 1993. rel/NF-κB nuclear complexes that bind κB sites in the murine c-rel promoter are required for constitutive c-rel transcription in B-cells. Cell Growth Differ. 4: 731–743.
  • Han, J., J. D. Lee, P. S. Tobias, and R. J. Ulevitch 1993. Endotoxin induces rapid protein tyrosine phosphorylation in 70Z/3 cells expressing CD14. J. Biol. Chem. 268: 25009–25014.
  • Imbert, V., R. A. Rupec, A. Livolsi, H. L. Pahl, E. B. M. Traenckner, C. Muellerdieckmann, D. Farahifar, B. Rossi, P. Auberger, P. A. Baeuerle, and J. F. Peyron 1996. Tyosine phosphorylation of IκBα activates NF-κB without proteolytic degradation of IκBα. Cell 86: 787–798.
  • Inoue, J., L. D. Kerr, A. Kakizuka, and I. M. Verma 1992. IκBγ, a 70 kd protein identical to the C-terminal half of p110 NF-κB: a new member of the IκB family. Cell 68: 1109–1120.
  • Inoue, J., L. D. Kerr, L. J. Ransone, E. Bengal, T. Hunter, and I. M. Verma 1991. c-rel activates but v-rel suppresses transcription from κB sites. Proc. Natl. Acad. Sci. USA 88: 3715–3719.
  • Kontgen, F., R. J. Grumont, A. Strasser, D. Metcalf, R. Li, D. Tarlinton, and S. Gerondakis 1995. Mice lacking the c-rel proto-oncogene exhibit defects in lymphocyte proliferation, humoral immunity, and interleukin-2 expression. Genes Dev. 9: 1965–1977.
  • Kopp, E. B., and S. Ghosh 1995. NF-κB and rel proteins in innate immunity. Adv. Immunol. 58: 1–27.
  • Krappmann, D., F. G. Wulczyn, and C. Scheidereit 1996. Different mechanisms control signal-induced degradation and basal turnover of the NF-κB inhibitor IκBα in vivo. EMBO J. 15: 6716–6726.
  • Liou, H. C., G. P. Nolan, S. Ghosh, T. Fujita, and D. Baltimore 1992. The NF-κB p50 precursor, p105, contains an internal IκB-like inhibitor that preferentially inhibits p50. EMBO J. 11: 3003–3009.
  • Liou, H. C., W. C. Sha, M. L. Scott, and D. Baltimore 1994. Sequential induction of NF-κB/Rel family proteins during B-cell terminal differentiation. Mol. Cell. Biol. 14: 5349–5359.
  • McKinsey, T. A., J. A. Brockman, D. C. Scherer, S. W. Al-Murrani, P. L. Green, and D. W. Ballard 1996. Inactivation of IκBβ by the tax protein of human T-cell leukemia virus type 1: a potential mechanism for constitutive induction of NF-κB. Mol. Cell. Biol. 16: 2083–90.
  • Mehdi, S. 1991. Cell-penetrating inhibitors of calpain. Trends Biochem. Sci. 16: 150–153.
  • Miyamoto, S., P. J. Chiao, and I. M. Verma 1994. Enhanced IκBα degradation is responsible for constitutive NF-κB activity in mature murine B-cell lines. Mol. Cell. Biol. 14: 3276–3282.
  • Miyamoto, S., M. Maki, M. J. Schmitt, M. Hatanaka, and I. M. Verma 1994. Tumor necrosis factor α-induced phosphorylation of IκBα is a signal for its degradation but not dissociation from NF-κB. Proc. Natl. Acad. Sci. USA 91: 12740–12744.
  • Miyamoto, S., M. J. Schmitt, and I. M. Verma 1994. Qualitative changes in the subunit composition of κB-binding complexes during murine B-cell differentiation. Proc. Natl. Acad. Sci. USA 91: 5056–5060.
  • Miyamoto, S., and I. M. Verma 1995. Rel/NF-κB/IκB story. Adv. Cancer Res. 66: 255–292.
  • Naviaux, R. K., E. Costanzi, M. Haas, and I. M. Verma 1996. The pCL vector system-rapid production of helper-free, high-titer, recombinant retroviruses. J. Virol. 70: 5701–5705.
  • Palombella, V. J., O. J. Rando, A. L. Goldberg, and T. Maniatis 1994. The ubiquitin-proteasome pathway is required for processing the NF-κB1 precursor protein and the activation of NF-κB. Cell 78: 773–785.
  • Phillips, R. J., and S. Ghosh 1997. Regulation of IκBβ in WEHI231 mature B cells. Mol. Cell. Biol. 17: 4390–4396.
  • Rechsteiner, M., and S. W. Rogers 1996. PEST sequences and regulation by proteolysis. Trends Biochem. Sci. 21: 267–271.
  • Rock, K. L., C. Gramm, L. Rothstein, K. Clark, R. Stein, L. Dick, D. Hwang, and A. L. Goldberg 1994. Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell 78: 761–771.
  • Rodriguez, M. S., J. Wright, J. Thompson, D. Thomas, F. Baleux, J. L. Virelizier, R. T. Hay, and F. Arenzanaseisdedos 1996. Identification of lysine residues required for signal-induced ubiquitination and degradtion of IκBα in vivo. Oncogene 12: 2425–2435.
  • Saido, T. C., H. Sorimachi, and K. Suzuki 1994. Calpain: new perspectives in molecular diversity and physiological-pathological involvement. FASEB J. 8: 814–822.
  • Scherer, D. C., J. A. Brockman, H. H. Bendall, G. M. Zhang, D. W. Ballard, and E. M. Oltz 1996. Corepression of RelA and c-rel inhibits immunoglobulin κ gene transcription and rearrangement in precursor B lymphocytes. Immunity 5: 563–574.
  • Schreck, R., and P. A. Baeuerle 1994. Assessing oxygen radicals as mediators in activation of inducible eukaryotic transcription factor NF-κB. Methods Enzymol. 234: 151–163.
  • Schwarz, E. M., D. VanAntwerp, and I. M. Verma 1996. Constitutive phosphorylation of IκBα by casein kinase II occurs preferentially at serine 293: requirement for degradation of free IκBα. Mol. Cell. Biol. 16: 3554–3559.
  • Sen, R., and D. Baltimore 1986. Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell 46: 705–716.
  • Sha, W. C., H. C. Liou, E. I. Tuomanen, and D. Baltimore 1995. Targeted disruption of the p50 subunit of NF-κB leads to multifocal defects in immune responses. Cell 80: 321–330.
  • Snapper, C. M., F. R. Rosas, P. Zelazowski, M. A. Moorman, M. R. Kehry, R. Bravo, and F. Weih 1996. B cells lacking RelB are defective in proliferative responses, but undergo normal B cell maturation to Ig secretion and Ig class switching. J. Exp. Med. 184: 1537–1541.
  • Sun, S. C., P. A. Ganchi, D. W. Ballard, and W. C. Greene 1993. NF-κB controls expression of inhibitor IκBα: evidence for an inducible autoregulatory pathway. Science 259: 1912–1915.
  • Suyang, H., R. Phillips, I. Douglas, and S. Ghosh 1996. Role of unphosphorylated, newly synthesized IκBβ in persistent activation of NF-κB. Mol. Cell. Biol. 16: 5444–5449.
  • Ten, R. M., C. V. Paya, N. Israel, O. Le Bail, M. G. Mattei, J. L. Virelizier, P. Kourilsky, and A. Israel 1992. The characterization of the promoter of the gene encoding the p50 subunit of NF-κB indicates that it participates in its own regulation. EMBO J. 11: 195–203.
  • Thompson, J. E., R. J. Phillips, H. Erdjument-Bromage, P. Tempst, and S. Ghosh 1995. IκBβ regulates the persistent response in a biphasic activation of NF-κB. Cell 80: 573–582.
  • Tsien, R. Y. 1981. A non-disruptive technique for loading calcium buffers and indicators into cells. Nature 290: 527–528.
  • VanAntwerp, D. J., S. J. Martin, T. Kafri, D. R. Green, and I. M. Verma 1996. Suppression of TNFα-induced apoptosis by NF-κB. Science 274: 787–789.
  • VanAntwerp, D. J., and I. M. Verma 1996. Signal-induced degradation of IκBα: association with NF-κB and the PEST sequence in IκBα are not required. Mol. Cell. Biol. 16: 6037–6045.
  • Verma, I. M., J. K. Stevenson, E. M. Schwarz, D. Van Antwerp, and S. Miyamoto 1995. Rel/NF-κB/IκB family: intimate tales of association and dissociation. Genes Dev. 9: 2723–2735.
  • Wang, C. Y., M. W. Mayo, and A. S. Baldwin 1996. TNF- and cancer therapy-induced apoptosis—potentiation by inhibition of NF-κB. Science 274: 784–787.
  • Whiteside, S. T., J.-C. Epinat, N. R. Rice, and A. Israel 1997. IκBɛ, a novel member of the IκB family, controls RelA and cRel NF-κB activity. EMBO J. 16: 1413–1426.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.