114
Views
239
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

Gene Conversion Tracts from Double-Strand Break Repair in Mammalian Cells

, , , &
Pages 93-101 | Received 16 Jun 1997, Accepted 27 Oct 1997, Published online: 28 Mar 2023

REFERENCES

  • Ahn, B.-Y., K. J. Dornfeld, T. J. Fagrelius, and D. M. Livingston 1988. Effect of limited homology on gene conversion in a Saccharomyces cerevisiae plasmid recombination system. Mol. Cell. Biol. 8: 2442–2448.
  • Bailis, A. M., L. Arthur, and R. Rothstein 1990. A defect in mismatch repair in Saccharomyces cerevisiae stimulates ectopic recombination between homeologous genes by an excision repair dependent process. Genetics 126: 535–547.
  • Brown, T. C., and J. Jiricny 1988. Different base/base mispairs are corrected with different efficiencies and specificities in monkey kidney cells. Cell 54: 705–711.
  • Cao, L., E. Alani, and N. Kleckner 1990. A pathway for generation and processing of double-strand breaks during meiotic recombination in S. cerevisiae. Cell 61: 1089–1101.
  • Chambers, S. R., N. Hunter, E. J. Louis, and R. H. Borts 1996. The mismatch repair system reduces meiotic homeologous recombination and stimulates recombination-dependent chromosome loss. Mol. Cell. Biol. 16: 6110–6120.
  • Choulika, A., A. Perrin, B. Dujon, and J.-F. Nicolas 1995. Induction of homologous recombination in mammalian chromosomes by using the I-SceI system of Saccharomyces cerevisiae. Mol. Cell. Biol. 15: 1968–1973.
  • de Wind, N., M. Dekker, A. Berns, M. Radman, and H. te Riele 1995. Inactivation of the mouse Msh2 gene results in mismatch repair deficiency, methylation tolerance, hyperrecombination, and predisposition to cancer. Cell 82: 321–330.
  • Donoho, G., M. Jasin, and P. Berg. Unpublished results.
  • Ferguson, D. O., and W. K. Holloman 1996. Recombinational repair of gaps in DNA is asymmetric in Ustilago maydis and can be explained by a migrating D-loop model. Proc. Natl. Acad. Sci. USA 93: 5419–5424.
  • Godwin, A. R., R. J. Bollag, D.-M. Christie, and R. M. Liskay 1994. Spontaneous and restriction enzyme-induced chromosomal recombination in mammalian cells. Proc. Natl. Acad. Sci. USA 91: 12554–12558.
  • Haber, J. E. 1995. In vivo biochemistry: physical monitoring of recombination induced by site-specific endonucleases. BioEssays 17: 609–620.
  • Jackson, S. P., and P. A. Jeggo 1995. DNA double-strand break repair and V(D)J recombination: involvement of DNA-PK. Trends Biochem. Sci. 20: 412–415.
  • Jasin, M. 1996. Genetic manipulation of genomes with rare-cutting endonucleases. Trends Genet. 12: 224–228.
  • Kogoma, T. 1996. Recombination by replication. Cell 85: 625–627.
  • Liang, F., P. J. Romanienko, D. T. Weaver, P. A. Jeggo, and M. Jasin 1996. Chromosomal double-strand break repair in Ku80 deficient cells. Proc. Natl. Acad. Sci. USA 93: 8929–8933.
  • Lin, F.-L., K. Sperle, and N. Sternberg 1990. Intermolecular recombination between DNAs introduced into mouse L cells is mediated by a nonconservative pathway that leads to crossover products. Mol. Cell. Biol. 10: 103–112.
  • Lukacsovich, T., D. Yang, and A. S. Waldman 1994. Repair of a specific double-strand break generated within a mammalian chromosome by yeast endonuclease I-SceI. Nucleic Acids Res. 22: 5649–5657.
  • Malkova, A., E. L. Ivanov, and J. E. Haber 1996. Double-strand break repair in the absence of RAD51 in yeast: a possible role for break-induced replication. Proc. Natl. Acad. Sci. USA 93: 7131–7136.
  • Modrich, P. 1991. Mechanisms and biological effects of mismatch repair. Annu. Rev. Genet. 25: 229–253.
  • Moynahan, M. E., and M. Jasin 1997. Loss of heterozygosity induced by a chromosomal double-strand break. Proc. Natl. Acad. Sci. USA 94: 8988–8993.
  • Petes, T. D., R. E. Malone, and L. S. Symington 1991. Recombination in yeast The molecular and cellular biology of the yeast Saccharomyces: genome dynamics, protein synthesis, and energetics. In: Broach, J. R., J. R. Pringle, and E. W. Jones407–521Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
  • Phillips, J. W., and W. F. Morgan 1994. Illegitimate recombination induced by DNA double-strand breaks in a mammalian chromosome. Mol. Cell. Biol. 14: 5794–5803.
  • Priebe, S. D., J. Westmoreland, T. Nilsson-Tillgren, and M. A. Resnick 1994. Induction of recombination between homologous diverged DNAs by double-strand gaps and breaks and role of mismatch repair. Mol. Cell. Biol. 14: 48024814.
  • Ray, B. L., C. I. White, and J. E. Haber 1991. Heteroduplex formation and mismatch repair of the “stuck” mutation during mating-type switching in Saccharomyces cerevisiae. Mol. Cell. Biol. 11: 5372–5380.
  • Rayssiguier, C., D. S. Thaler, and M. Radman 1989. The barrier to recombination between Escherichia coli and Salmonella typhimurium is disrupted in mismatch-repair mutants. Nature 342: 396–401.
  • Resnick, M. 1976. The repair of double-strand breaks in DNA; a model involving recombination. J. Theor. Biol. 59: 97–109.
  • Robertson, E. J. 1987. Embryo-derived stem cell lines Teratocarcinomas and embryonic stem cells: a practical approach. In: Robertson, E. J.71–112IRL Press, Washington, D.C.
  • Rouet, P., F. Smih, and M. Jasin 1994. Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol. Cell. Biol. 14: 8096–8106.
  • Rouet, P., F. Smih, and M. Jasin 1994. Expression of site-specific endonuclease stimulates recombination in mammalian cells. Proc. Natl. Acad. Sci. USA 91: 6064–6068.
  • Sargent, R. G., M. A. Brenneman, and J. H. Wilson 1997. Repair of site-specific double-strand breaks in a mammalian chromosome by homologous and illegitimate recombination. Mol. Cell. Biol. 17: 267–277.
  • Schneider, W. P., B. P. Nichols, and C. Yanofsky 1981. Procedure for production of hybrid genes and proteins and its use in assessing significance of amino acid differences in homologous tryptophan synthetase α polypeptides. Proc. Natl. Acad. Sci. USA 78: 2169–2173.
  • Schwacha, A., and N. Kleckner 1995. Identification of double Holliday junctions as intermediates in meiotic recombination. Cell 83: 783–791.
  • Shen, P., and H. V. Huang 1986. Homologous recombination in Escherichia coli: dependence on substrate length and homology. Genetics 112: 441–457.
  • Shinohara, A., and T. Ogawa 1995. Homologous recombination and the role of double-strand breaks. Trends Biochem. 20: 387–391.
  • Smih, F., P. Rouet, P. J. Romanienko, and M. Jasin 1995. Double-strand breaks at the target locus stimulate gene targeting in embryonic stem cells. Nucleic Acids Res. 23: 5012–5019.
  • Stahl, F. 1996. Meiotic recombination in yeast: coronation of the double-strand-break repair model. Cell 87: 965–968.
  • Sugawara, N., and J. E. Haber 1992. Characterization of double-strand break-induced recombination: homology requirements and single-stranded DNA formation. Mol. Cell. Biol. 12: 563–575.
  • Sun, H., D. Treco, N. P. Schultes, and J. W. Szostak 1989. Double-strand breaks at an initiation site for meiotic gene conversion. Nature 338: 87–90.
  • Sweetser, D. B., H. Hough, J. F. Whelden, M. Arbuckle, and J. A. Nickoloff 1994. Fine-resolution mapping of spontaneous and double-strand break-induced gene conversion tracts in Saccharomyces cerevisiae reveals reversible mitotic conversion polarity. Mol. Cell. Biol. 14: 3863–3875.
  • Szostak, J. W., T. L. Orr-Weaver, R. J. Rothstein, and F. W. Stahl 1983. The double-strand-break repair model for recombination. Cell 33: 25–35.
  • Taghian, D. G., and J. A. Nickoloff. Chromosomal double-strand breaks induce gene conversion at high frequency in mammalian cells. Mol. Cell. Biol. 17:6386–6393.
  • te Riele, H., E. R. Maandag, and A. Berns 1992. Highly efficient gene targeting in embryonic stem cells through homologous recombination with isogenic DNA constructs. Proc. Natl. Acad. Sci. USA 89: 5128–5132.
  • Thomas, K. R., and M. R. Capecchi 1987. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51: 503–512.
  • Waldman, A. S., and R. M. Liskay 1987. Differential effects of base-pair mismatch on intrachromsomal versus extrachromsomal recombination in mouse cells. Proc. Natl. Acad. Sci. USA 84: 5340–5344.
  • Waldman, A. S., and R. M. Liskay 1988. Dependence of intrachromosomal recombination in mammalian cells on uninterrupted homology. Mol. Cell. Biol. 8: 5350–5357.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.