26
Views
92
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Degradation of Myogenic Transcription Factor MyoD by the Ubiquitin Pathway In Vivo and In Vitro: Regulation by Specific DNA Binding

, , , , , & show all
Pages 5670-5677 | Received 30 Apr 1998, Accepted 25 Jun 1998, Published online: 28 Mar 2023

REFERENCES

  • Bates, S., and K. H. Vousden 1996. p53 in signaling checkpoint arrest or apoptosis. Curr. Opin. Genet. Dev. 6: 1–7.
  • Benezra, R., R. L. Davis, D. Lockshon, D. L. Turner, and H. Weintraub 1990. The protein Id: a negative regulator of helix-loop-helix DNA binding proteins. Cell 61: 49–59.
  • Bengal, E., O. Flores, P. N. Rangarajan, A. Chen, H. Weintraub, and I. M. Verma 1994. Positive control mutations in the MyoD basic region fail to show cooperative DNA binding and transcriptional activation in vitro. Proc. Natl. Acad. Sci. USA 91: 6221–6225.
  • Bercovich, B., I. Stancovski, A. Mayer, N. Blumenfeld, A. Laszlo, A. L. Schwartz, and A. Ciechanover 1997. Ubiquitin-dependent degradation of certain protein substrates in vitro requires the molecular chaperone Hsc70. J. Biol. Chem. 272: 9002–9010.
  • Blumenfeld, N., H. Gonen, A. Mayer, C. E. Smith, N. R. Siegel, A. L. Schwartz, and A. Ciechanover 1994. Purification and characterization of a novel species of ubiquitin-carrier protein, E2, that is involved in degradation of non-“N-end rule” protein substrates. J. Biol. Chem. 269: 9574–9581.
  • Boissel, J. P., T. J. Casper, and H. F. Bunn 1988. Cotranslational amino-terminal processing of cytosolic proteins. Cell free expression of site-directed mutants of human hemoglobin. J. Biol. Chem. 263: 8443–8449.
  • Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.
  • Ciechanover, A. 1994. The ubiquitin-proteasome proteolytic pathway. Cell 79: 13–21.
  • Coux, O., K. Tanaka, and A. L. Goldberg 1996. Structure and functions of the 20S and 26S proteasomes. Annu. Rev. Biochem. 65: 801–847.
  • Davis, R. L., H. Weintraub, and A. B. Lassar 1987. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51: 987–1000.
  • Deshaies, R. J. 1995. Make it or break it: the role of ubiquitin-dependent proteolysis in cellular regulation. Trends Cell Biol. 5: 428–434.
  • Fenteany, G., R. F. Standaert, W. S. Lane, S. Choi, E. J. Corey, and S. L. Schreiber 1995. Inhibition of proteasome activities and subunit-specific amino-terminal threonine modification by lactacystin. Science 268: 726–731.
  • Gonen, H., A. L. Schwartz, and A. Ciechanover 1991. Purification and characterization of a novel protein that is required for the degradation of N-α-acetylated proteins by the ubiquitin system. J. Biol. Chem. 266: 19221–19231.
  • Guan, J. L., and J. K. Rose 1984. Conversion of a secretory protein into a transmembrane protein results in its transport to the Golgi complex but not to the cell surface. Cell 37: 779–787.
  • Haas, A. L., and P. M. Bright 1988. The resolution and characterization of putative ubiquitin carrier protein isozymes from rabbit reticulocytes. J. Biol. Chem. 267: 13258–13267.
  • Haupt, Y., R. Maya, A. Kazaz, and M. Oren 1997. Mdm2 promotes the rapid degradation of p53. Nature 387: 296–299.
  • Hershko, A., E. Eytan, A. Ciechanover, and A. L. Haas 1982. Immunochemical analysis of the turnover of ubiquitin-protein conjugates in intact cells: relationship to the breakdown of abnormal proteins. J. Biol. Chem. 257: 13964–13970.
  • Hershko, A., H. Heller, S. Elias, and A. Ciechanover 1983. Components of ubiquitin-protein ligase system: resolution, affinity purification and role in protein breakdown. J. Biol. Chem. 258: 8206–8214.
  • Hershko, A., and I. A. Rose 1987. Ubiquitin-aldehyde: a general inhibitor of ubiquitin recycling processes. Proc. Natl. Acad. Sci. USA 84: 1829–1833.
  • Hochstrasser, M. 1996. Ubiquitin-dependent protein degradation. Annu. Rev. Genet. 30: 405–439.
  • Jen, Y., H. Weintraub, and R. Benezra 1992. Overexpression of Id protein inhibits the muscle differentiation program: in vivo association of Id with E2A proteins. Genes Dev. 6: 1466–1479.
  • Krause, M., M. Park, J. M. Zhang, J. Yuan, B. Harfe, S. Q. Xu, I. Greenwald, M. Cole, B. Paterson, and A. Fire 1997. A C. elegans E/Daughterless bHLH protein marks neuronal but not striated muscle development. Development 124: 2179–2189.
  • Kubbutat, M. H. G., S. N. Jones, and K. H. Vousden 1997. Regulation of p53 stability by Mdm2. Nature 387: 299–303.
  • Langlands, K., X. Yin, G. Anand, and E. V. Prochownik 1997. Differential interactions of Id proteins with basic helix-loop-helix transcription factors. J. Biol. Chem. 272: 19785–19793.
  • Lassar, A. B., J. A. Baskin, D. Lockshon, R. L. Davis, S. Apone, S. D. Hauschka, and H. Weintraub 1989. MyoD is a sequence-specific DNA-binding protein requiring a region of Myc homology to bind to the muscle creatine kinase enhancer. Cell 58: 823–831.
  • Maleki, S. J., C. A. Royer, and B. K. Hurlburt 1997. MyoD-E12 heterodimers and MyoD-MyoD homodimers are equally stable. Biochemistry 36: 6762–6767.
  • Molinari, M., and J. Milner 1995. p53 in complex with DNA is resistant to ubiquitin-dependent proteolysis in the presence of HPV-16 E6. Oncogene 10: 1849–1854.
  • Murre, C., P. S. McCaw, H. Vaessin, M. Caudy, L. Y. Jan, Y. N. Jan, C. V. Cabrera, J. N. Buskin, S. D. Hauschka, A. B. Lassar, H. Weintrub, and D. Baltimore 1989. Interactions between heterologous helix-loop-helix proteins generate complexes that bind specifically to a common DNA sequence. Cell 58: 537–544.
  • Nuber, U., S. Schwarz, P. Kaiser, R. Schneider, and M. Scheffner 1996. Cloning of human ubiquitin-conjugating enzymes UbcH6 and UbcH7 (E2-F1) and characterization of their interaction with E6-AP and RSP5. J. Biol. Chem. 271: 2795–2800.
  • Olson, E. N., and W. H. Klein 1994. bHLH factors in muscle development: deadlines and commitments, what to leave in and what to leave out. Genes Dev. 8: 1–8.
  • Pickart, C. M., and I. A. Rose 1985. Functional heterogeneity of ubiquitin-carrier proteins. J. Biol. Chem. 260: 1573–1581.
  • Pickart, C. M., and A. T. Vella 1988. Levels of active ubiquitin-carrier proteins decline during erythroid maturation. J. Biol. Chem. 263: 12028–12035.
  • Reiss, Y., D. Kaim, D., and A. Hershko 1988. Specificity of binding of NH2-terminal residue of proteins to ubiquitin-protein ligase: use of amino acid derivatives to characterize specific binding sites. J. Biol. Chem. 263: 2693–2698.
  • Scheffner, M., J. M. Huibregtse, and P. M. Howley 1994. Identification of a human ubiquitin-conjugating enzyme that mediates the E6-AP-dependent ubiquitination of p53. Proc. Natl. Acad. Sci. USA 91: 8797–8801.
  • Stancovski, I., H. Gonen, A. Orian, A. L. Schwartz, and A. Ciechanover 1995. Degradation of the proto-oncogene product c-Fos by the ubiquitin proteolytic system in vivo and in vitro: identification and characterization of the conjugating enzymes. Mol. Cell. Biol. 15: 7106–716.
  • Sun, X. H., and D. Baltimore 1991. An inhibitory domain of E12 transcription factor prevents DNA binding in E12 homodimers but not in E12 heterodimers. Cell 64: 459–470.
  • Sun, X. H., N. G. Copeland, N. A. Jenkins, and D. Baltimore 1991. Id proteins Id1 and Id2 selectively inhibit DNA binding by one class of helix-loop-helix proteins. Mol. Cell. Biol. 11: 5603–5611.
  • Thayer, M. J., S. J. Tapscott, R. L. Davis, W. E. Wright, A. B. Lassar, and H. Weintraub 1989. Positive autoregulation of the myogenic determination gene MyoD. Cell 58: 241–248.
  • Thayer, M. J., and H. Weintraub 1993. A cellular factor stimulates the DNA binding activity of MyoD and E47. Proc. Natl. Acad. Sci. USA 90: 6483–6487.
  • Varshavsky, A. 1992. The N-end rule. Cell 69: 725–735.
  • Weintraub, H., R. Davis, D. Lockshon, and A. Lassar 1990. MyoD binds cooperatively to two sites in a target enhancer sequence: occupancy of two sites is required for activation. Proc. Natl. Acad. Sci. USA 87: 5623–5627.
  • Weintraub, H., R. Davis, S. Tapscott, M. Thayer, M. Krause, R. Benezra, T. K. Blackwell, D. Turner, R. Rupp, S. Hollenberg, Y. Zhuang, and A. Lassar 1991. The MyoD gene family: nodal point during specification of muscle cell lineage. Science 251: 761–766.
  • Weintraub, H. 1993. The MyoD family and myogenesis: redundancy, networks, and thresholds. Cell 75: 1241–1244.
  • Wing, S. S., F. Dumas, and D. Banville 1992. A rabbit reticulocyte ubiquitin carrier protein that supports ubiquitin-dependent proteolysis (E214k) is homologous to the yeast DNA repair gene. J. Biol. Chem. 267: 6495–6501.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.