21
Views
138
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Regulation of Mdm2-Directed Degradation by the C Terminus of p53

, , &
Pages 5690-5698 | Received 09 Feb 1998, Accepted 15 Jul 1998, Published online: 28 Mar 2023

REFERENCES

  • Anderson, M. E., B. Woelker, M. Reed, P. Wang, and P. Tegtmeyer 1997. Reciprocal interference between the sequence-specific core and nonspecific C-terminal DNA binding domains of p53: implications for regulation. Mol. Cell. Biol. 17: 6255–6264.
  • Armstrong, J. F., M. H. Kaufman, D. J. Harrison, and A. R. Clarke 1995. High-frequency developmental abnormalities in p53-deficient mice. Curr. Biol. 5: 931–936.
  • Ashcroft, M., and K. H. Vousden. Regulation of p53 function and stability by phosphorylation. Submitted for publication.
  • Barak, Y., T. Juven, R. Haffner, and M. Oren 1993. mdm-2 expression is induced by wild type p53 activity. EMBO J. 12: 461–468.
  • Bates, S., and K. H. Vousden 1996. p53 in signalling checkpoint arrest or apoptosis. Curr. Opin. Genet. Dev. 6: 1–7.
  • Böttger, A., V. Böttger, A. Sparks, L. W.-L. S. F. Howard, and D. P. Lane 1997. Design of a synthetic Mdm-2 binding mini protein that activates the p53 response in vivo. Curr. Biol. 7: 860–869.
  • Brugarolas, J., C. Chandrasekaran, J. I. Gordon, D. Beach, T. Jacks, and G. J. Hannon 1995. Radiation-induced cell cycle arrest compromised by p21 deficiency. Nature 377: 552–556.
  • Caelles, C., A. Helmberg, and M. Karin 1994. p53-dependent apoptosis in the absence of transcriptional activation of p53-target genes. Nature 370: 220–223.
  • Chen, J., X. Wu, J. Lin, and A. J. Levine 1996. mdm-2 inhibits the G1 arrest and apoptosis functions of the p53 tumor suppressor protein. Mol. Cell. Biol. 16: 2445–2452.
  • Chen, J. D., V. Marechal, and A. J. Levine 1993. Mapping of the p53 and mdm-2 interaction domains. Mol. Cell. Biol. 13: 4107–4114.
  • Crook, T., R. L. Ludwig, N. J. Marston, D. Willkomm, and K. H. Vousden 1996. Sensitivity of p53 lysine mutants to ubiquitin-directed degradation targeted by human papillomavirus E6. Virology 217: 285–292.
  • Crook, T., N. J. Marston, E. A. Sara, and K. H. Vousden 1994. Transcriptional activation by p53 correlates with suppression of growth but not transformation. Cell 79: 817–827.
  • Crook, T., J. A. Tidy, and K. H. Vousden 1991. Degradation of p53 can be targeted by HPV E6 sequences distinct from those required for p53 binding and transactivation. Cell 67: 547–556.
  • Deng, C., P. Zhang, J. W. Harper, S. J. Elledge, and P. Leder 1995. Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell 82: 675–684.
  • Donehower, L. A. 1996. The p53-deficient mouse: a model for basic and applied cancer studies. Semin. Cancer Biol. 7: 269–278.
  • Fritsche, M., C. Haessler, and G. Brandner 1993. Induction of nuclear accumulation of the tumor-suppressor protein p53 by DNA-damaging agents. Oncogene 8: 307–318.
  • Fu, L., and S. Benchimol 1997. Participation of the human p53 3′UTR in translational repression and activation following gamma-irradiation. EMBO J. 16: 4117–4127.
  • Greenblatt, M. S., W. P. Bennett, M. Hollstein, and C. C. Harris 1994. Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res. 54: 4855–4878.
  • Gu, W., and R. G. Roeder 1997. Activation of p53 sequence-specific DNA binding by acetylation of the C-terminal domain. Cell 90: 595–606.
  • Haupt, Y., Y. Barak, and M. Oren 1996. Cell type-specific inhibition of p53-mediated apoptosis by mdm2. EMBO J. 15: 1596–1606.
  • Haupt, Y., R. Maya, A. Kazaz, and M. Oren 1997. Mdm2 promotes the rapid degradation of p53. Nature 387: 296–299.
  • Haupt, Y., S. Rowan, E. Shaulian, K. H. Vousden, and M. Oren 1995. Induction of apoptosis in HeLa cells by trans-activation deficient p53. Genes Dev. 9: 2170–2183.
  • Honda, R., H. Tanaka, and H. Yasuda 1997. Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett. 420: 25–27.
  • Huibregtse, J. M., M. Scheffner, and P. M. Howley 1993. Cloning and expression of the cDNA for E6-AP, a protein that mediates the interaction of the human papillomavirus E6 oncoprotein with p53. Mol. Cell. Biol. 13: 775–784.
  • Hupp, T. R., and D. P. Lane 1994. Regulation of the cryptic sequence-specific DNA-binding function of p53 by protein kinases. Cold Spring Harbor Symp. Quant. Biol. 59: 195–206.
  • Hupp, T. R., D. W. Meek, C. A. Midgley, and D. P. Lane 1992. Regulation of the specific DNA binding function of p53. Cell 71: 875–886.
  • Hupp, T. R., A. Sparks, and D. P. Lane 1995. Small peptides activate the latent sequence-specific DNA binding function of p53. Cell 83: 237–245.
  • Jayaraman, L., and C. Prives 1995. Activation of p53 sequence-specific DNA binding by short single strands of DNA requires the p53 C-terminus. Cell 81: 1021–1029.
  • Jones, S. N., A. E. Roe, L. A. Donehower, and A. Bradley 1995. Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature 378: 206–208.
  • Kastan, M. B., O. Onyekwere, D. Sidransky, B. Vogelstein, and R. W. Craig 1991. Participation of p53 protein in the cellular response to DNA damage. Cancer Res. 51: 6304–6311.
  • Ko, L. J., and C. Prives 1996. p53: puzzle and paradigm. Genes Dev. 10: 1054–1072.
  • Kubbutat, M. H. G., S. N. Jones, and K. H. Vousden 1997. Regulation of p53 stability by Mdm2. Nature 387: 299–303.
  • Kussie, P. H., S. Gorina, V. Marechal, B. Elenbaas, J. Moreau, A. J. Levine, and N. P. Pavletich 1996. Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274: 948–953.
  • Lane, D. P. 1992. p53, guardian of the genome. Nature 358: 15–16.
  • Lu, X., S. A. Burbridge, S. Griffin, and H. M. Smith 1997. Discordance between accumulated p53 protein levels and its transcriptional activity in response to U.V. radiation. Oncogene 13: 413–418.
  • Maki, C. G., J. Huibregtse, and P. M. Howley 1996. In vivo ubiquitination and proteosome-mediated degradation of p53. Cancer Res. 56: 2649–2654.
  • Maltzman, W., and L. Czyzyk 1984. UV irradiation stimulates levels of p53 cellular tumor antigen in nontransformed mouse cells. Mol. Cell. Biol. 4: 1689–1694.
  • Mansur, C. P., B. Marcus, S. Dalal, and E. J. Androphy 1995. The domain of p53 required for binding HPV16 E6 is separable from the degradation domain. Oncogene 10: 457–465.
  • Marston, N. J., T. Crook, and K. H. Vousden 1994. Interaction of p53 with MDM2 is independent of E6 and does not mediate wild type transformation suppressor function. Oncogene 9: 2707–2716.
  • Marston, N. J., J. R. Jenkins, and K. H. Vousden 1995. Oligomerisation of full length p53 contributes to the interaction with mdm2 but not HPV E6. Oncogene 10: 1709–1715.
  • Marston, N. J., R. L. Ludwig, and K. H. Vousden 1998. Activation of p53 DNA binding activity by point mutation. Oncogene, in press.
  • Mayo, L. D., J. J. Turchi, and S. J. Berberich 1997. Mdm-2 phosphorylation by DNA-dependent protein kinase prevents interaction with p53. Cancer Res. 57: 5013–5016.
  • McCurrach, M. E., T. M. F. Connor, M. C. Knudson, S. J. Korsmeyer, and S. W. Lowe 1997. bax-deficiency promotes drug resistance and oncogenic transformation by attenuating p53-dependent apoptosis. Proc. Natl. Acad. Sci. USA 94: 2345–2349.
  • Midgley, C. A., and D. P. Lane 1997. p53 protein stability in tumour cells is not determined by mutation but is dependent on Mdm2 binding. Oncogene 15: 1179–1189.
  • Momand, J., G. P. Zambetti, D. L. George, and A. J. Levine 1992. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 69: 1237–1245.
  • Montes de Oca Luna, R., D. S. Wagner, and G. Lozano 1995. Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature 378: 203–206.
  • Oliner, J. D., J. A. Pietenpol, S. Thiagalingam, J. Gyuris, K. W. Kinzler, and B. Vogelstein 1993. Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53. Nature 362: 857–860.
  • Picksley, S. M., B. Vojtesek, A. Sparks, and D. P. Lane 1994. Immunochemical analysis of the interaction of p53 with MDM2—fine mapping of the MDM2 binding site on p53 using synthetic peptides. Oncogene 9: 2523–2529.
  • Pomerantz, J., N. Schreiber-Agus, N. J. Liégeois, A. Silverman, L. Alland, L. Chin, J. Potes, K. Chen, I. Orlow, H.-W. Lee, C. Cordon-Cardo, and R. A. DePinho 1998. The Ink4a tumor suppressor gene product, p19Arf, interacts with MDM2 and neutralizes MDM2’s inhibition of p53. Cell 92: 713–723.
  • Roth, J., M. Dobbelstein, D. A. Freedman, T. Shenk, and A. J. Levine 1998. Nucleo-cytoplasmic shuttling of the hdm2 oncoprotein regulates the levels of the p53 protein via a pathway used by the human immunodeficiency virus rev protein. EMBO J. 17: 554–564.
  • Scheffner, M., J. M. Huibregtse, R. D. Vierstra, and P. M. Howley 1993. The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell 75: 495–505.
  • Scheffner, M., B. A. Werness, J. M. Huibregtse, A. J. Levine, and P. M. Howley 1990. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 63: 1129–1136.
  • Shaw, P., J. Freeman, R. Bovey, and R. Iggo 1996. Regulation of specific DNA binding by p53: evidence for a role of O-glycosylation and charged residues at the carboxy-terminus. Oncogene 12: 921–930.
  • Shieh, S.-Y., M. Ikeda, Y. Taya, and C. Prives 1997. DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 91: 325–334.
  • Stott, F., S. A. Bates, M. James, B. B. McConnell, M. Starborg, S. Brookes, I. Palmero, E. Hara, K. M. Ryan, K. H. Vousden, and G. Peters 1998. The alternative product from the human CDKN2A locus, p14ARF, participates in a regulatory feedback loop with p53 and MDM2. EMBO J., in press.
  • Stürzbecher, H. W., R. Brain, C. Addison, K. Rudge, M. Remm, M. Grimaldi, E. Keenan, and J. R. Jenkins 1992. A C-terminal alpha-helix plus basic region motif is the major structural determinant of p53 tetramerization. Oncogene 7: 1513–1523.
  • Sun, Y., J. Bian, Y. Wang, and C. Jacobs 1997. Activation of p53 transcriptional activity by 1,10-phenanthroline, a metal chelator and redox sensitive compound. Oncogene 14: 385–393.
  • Tarunina, M., and J. R. Jenkins 1993. Human p53 binds DNA as a protein homodimer but monomeric variants retain full transcription transactivation activity. Oncogene 7: 3165–3173.
  • Vogelstein, B., and K. W. Kinzler 1992. p53 function and dysfunction. Cell 70: 523–526.
  • Wagner, A. J., J. M. Kokontis, and N. Hay 1994. Myc-mediated apoptosis requires wild-type p53 in a manner independent of cell cycle arrest and the ability of p53 to induce p21waf1/cip1. Genes Dev. 8: 2817–2830.
  • Waldman, T., K. W. Kinzler, and B. Vogelstein 1995. p21 is necessary for the p53-mediated G1 arrest in human cancer cells. Cancer Res. 55: 5187–5190.
  • Wu, X. W., J. H. Bayle, D. Olson, and A. J. Levine 1993. The p53 mdm-2 autoregulatory feedback loop. Genes Dev. 7: 1126–1132.
  • Yin, C., C. M. Knudson, S. J. Korsmeyer, and T. Van Dyke 1997. Bax suppresses tumorigenesis and stimulates apoptosis in vivo. Nature 385: 637–640.
  • Zhang, Y., Y. Xiong, and W. G. Yarbrough 1998. ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways. Cell 92: 725–734.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.