14
Views
36
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Requirements for Chromatin Modulation and Transcription Activation by the Pho4 Acidic Activation Domain

, , , &
Pages 5818-5827 | Received 17 Dec 1997, Accepted 28 Jul 1998, Published online: 28 Mar 2023

REFERENCES

  • Almer, A., and W. Hörz 1986. Nuclease hypersensitive regions with adjacent positioned nucleosomes mark the gene boundaries of the PHO5/PHO3 locus in yeast. EMBO J. 5: 2681–2687.
  • Almer, A., H. Rudolph, A. Hinnen, and W. Hörz 1986. Removal of positioned nucleosomes from the yeast PHO5 promoter upon PHO5 induction releases additional upstream activating DNA elements. EMBO J. 5: 2689–2696.
  • Baker, R. E., and D. C. Masison 1990. Isolation of the gene encoding the Saccharomyces cerevisiae centromere-binding protein CP1. Mol. Cell. Biol. 10: 2458–2467.
  • Barbaric, S., M. Münsterkötter, J. Svaren, and W. Hörz 1996. The homeodomain protein Pho2 and the basic-helix-loop-helix protein Pho4 bind DNA cooperatively at the yeast PHO5 promoter. Nucleic Acids Res. 24: 4479–4486.
  • Barbaric, S., M. Münsterkötter, C. Goding, and W. Hörz 1998. Cooperative Pho2-Pho4 interactions at the PHO5 promoter facilitate Pho4 binding to UASp1 and enhance transactivation by Pho4 at UASp2. Mol. Cell. Biol. 18: 2629–2639.
  • Cai, M., and R. W. Davis 1990. Yeast centromere binding protein CBF1, of the helix-loop-helix protein family, is required for chromosome stability and methionine prototrophy. Cell 61: 437–446.
  • Chang, J., D. H. Kim, S. W. Lee, K. Y. Choi, and Y. C. Sung 1995. Transactivation ability of p53 transcriptional activation domain is directly related to the binding affinity to TATA-binding protein. J. Biol. Chem. 270: 25014–25019.
  • Clark, D. J., C. S. Hill, S. R. Martin, and J. O. Thomas 1988. Alpha-helix in the carboxy-terminal domains of histones H1 and H5. EMBO J. 7: 69–75.
  • Cress, W. D., and S. J. Triezenberg 1991. Critical structural elements of the VP16 transcriptional activation domain. Science 251: 87–90.
  • Degrado, W. F., F. J. Kedzy, and E. T. Kaiser 1981. Design, synthesis and characterization of a cytotoxic peptide with melittin-like activity. J. Am. Chem. Soc. 103: 679–681.
  • Donaldson, L., and J. P. Capone 1992. Purification and characterization of the carboxy terminal transactivation domain of Vmw65 from herpes simplex virus. J. Biol. Chem. 267: 1411–1414.
  • Drysdale, C. M., E. Duenas, B. M. Jackson, U. Ruesser, G. H. Braus, and A. G. Hinnebusch 1995. The transcriptional activator GCN4 contains multiple activation domains that are critically dependent on hydrophobic amino acids. Mol. Cell. Biol. 15: 1220–1233.
  • Fascher, K. D., J. Schmitz, and W. Hörz 1990. Role of trans-activating proteins in the generation of active chromatin at the PHO5 promoter in S. cerevisiae. EMBO J. 9: 2523–2528.
  • Fascher, K. D., J. Schmitz, and W. Hörz 1993. Structural and functional requirements for the chromatin transition at the PHO5 promoter in Saccharomyces cerevisiae upon PHO5 activation. J. Mol. Biol. 231: 658–667.
  • Fisher, F., P. S. Jayaraman, and C. R. Goding 1991. C-myc and the yeast transcription factor PHO4 share a common CACGTG-binding motif. Oncogene 6: 1099–1104.
  • Gaudreau, L., A. Schmid, D. Blaschke, M. Ptashne, and W. Hörz 1997. RNA polymerase holoenzyme recruitment is sufficient to remodel chromatin at the yeast PHO5 promoter. Cell 89: 55–62.
  • Giniger, E., and M. Ptashne 1987. Transcription in yeast activated by a putative amphipathic alpha helix linked to a DNA binding unit. Nature 330: 670–672.
  • Hirst, K., F. Fisher, P. C. McAndrew, and C. R. Goding 1994. The transcription factor, the Cdk, its cyclin and their regulator: directing the transcriptional response to a nutritional signal. EMBO J. 13: 5410–5420.
  • Hua, X.-Q., W.-H. Jia, B. P. Bullock, J. F. Habener, and M. A. Weiss 1998. Transcriptional activator-cofactor recognition: nascent folding of a kinase-inducible transactivation domain predicts its structure on coactivator binding. Biochemistry 37: 5858–5866.
  • Jackson, B. M., C. M. Drysdale, K. Natarajan, and A. G. Hinnebusch 1996. Identification of seven hydrophobic clusters in GCN4 making redundant contributions to transcriptional activation. Mol. Cell. Biol. 16: 5557–5571.
  • Jasanoff, A., and A. R. Fersht 1994. Quantitation of helical propensities from trifluoroethanol titration curves. Biochemistry 33: 2129–2135.
  • Jayaraman, P. S., K. Hirst, and C. R. Goding 1994. The activation domain of a basic helix-loop-helix protein is masked by repressor interaction with domains distinct from that required for transcription regulation. EMBO J. 13: 2192–2199.
  • Kaffman, A., I. Herskowitz, R. Tjian, and E. K. O’Shea 1994. Phosphorylation of the transcription factor PHO4 by a cyclin-CDK complex, PHO80-PHO85. Science 263: 1153–1156.
  • Kussie, P. H., S. Gorina, V. Marechal, B. Elenbaas, J. Moreau, A. J. Levine, and N. P. Pavletich 1996. Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274: 948–953.
  • Leinhard Schmitz, M., M. A. dos Santos Silva, H. Altmann, M. Czisch, T. A. Holak, and P. A. Bauerle 1994. Structural and functional analysis of the NF-κB p65 C terminus. J. Biol. Chem. 269: 25613–25620.
  • Leuther, K. K., J. M. Salmeron, and S. A. Johnston 1993. Genetic evidence that an activation domain of GAL4 does not require acidity and may form a beta-sheet. Cell 72: 575–585.
  • Lin, J., J. Chen, B. Elenbaas, and A. J. Levine 1994. Several hydrophobic amino acids in the p53 amino-terminal domain are required for transcriptional activation, binding to mdm-2 and the adenovirus 5 E1B 55-kD protein. Genes Dev. 8: 1235–1246.
  • Luo, P., and R. L. Baldwin 1997. Mechanism of helix induction by trifluoroethanol: a framework for extrapolating the helix-forming properties of peptides from trifluoroethanol/water mixtures back to water. Biochemistry 36: 8413–8421.
  • Ma, J., and M. Ptashne 1987. A new class of yeast transcriptional activators. Cell 51: 113–119.
  • Mellor, J., W. Jiang, M. Funk, J. Rathjen, C. A. Barnes, T. Hinz, J. H. Hegemann, and P. Philippsen 1990. CPF1, a yeast protein which functions in centromeres and promoters. EMBO J. 9: 4017–4026.
  • Ogawa, N., and Y. Oshima 1990. Functional domains of a positive regulatory protein, PHO4, for transcriptional control of the phosphatase regulon in Saccharomyces cerevisiae. Mol. Cell. Biol. 10: 2224–2236.
  • O’Hare, P., and G. Williams 1992. Structural studies of the acidic transactivation domain of the Vmw65 protein of herpes simplex virus using 1H NMR. Biochemistry 31: 4150–4156.
  • O’Neill, E. M., A. Kaffman, E. R. Jolly, and E. K. O’Shea 1996. Regulation of PHO4 nuclear localization by the PHO80-PHO85 cyclin-CDK complex. Science 271: 209–212.
  • Radhakrishnan, I., G. C. Perez-Alvarado, D. Parker, H. J. Dyson, M. R. Montminy, and P. E. Wright 1997. Solution structure of the KIX domain of CBP bound to the transactivation domain of CREB: a model for activator:coactivator interactions. Cell 91: 741–752.
  • Regier, J. L., F. Shen, and S. J. Triezenberg 1993. Pattern of aromatic and hydrophobic amino acids critical for one of two subdomains of the VP16 transcriptional activator. Proc. Natl. Acad. Sci. USA 90: 883–887.
  • Schmid, A., K. D. Fascher, and W. Hörz 1992. Nucleosome disruption at the yeast PHO5 promoter upon PHO5 induction occurs in the absence of DNA replication. Cell 71: 853–864.
  • Shao, D., C. L. Creasy, and L. W. Bergman 1996. Interaction of Saccharomyces cerevisiae Pho2 with Pho4 increases the accessibility of the activation domain. Mol. Gen. Genet. 251: 358–364.
  • Svaren, J., J. Schmitz, and W. Hörz 1994. The transactivation domain of Pho4 is required for nucleosome disruption at the PHO5 promoter. EMBO J. 13: 4856–4862.
  • Svaren, J., U. Venter, and W. Hörz 1995. In vivo analysis of nucleosome structure and transcription factor binding in S. cerevisiae. Methods Mol. Genet. 6: 153–167.
  • Tanaka, M. 1996. Modulation of promoter occupancy by cooperative DNA/binding and activation-domain function is a major determinant of transcriptional regulation by activators in vivo. Proc. Natl. Acad. Sci. USA 93: 4311–4315.
  • Uesugi, M., O. Nyanguile, H. Lu, A. J. Levine, and G. L. Verdine 1997. Induced alpha helix in the VP16 activation domain upon binding to a human TAF. Science 277: 1310–1313.
  • Van Hoy, M., K. K. Leuther, T. Kodadek, and S. A. Johnston 1993. The acidic activation domains of the GCN4 and GAL4 proteins are not alpha-helical but form beta sheets. Cell 72: 587–594.
  • Vashee, S., and T. Kodadek 1995. The activation domain of GAL4 protein mediates cooperative promoter binding with general transcription factors in vivo. Proc. Natl. Acad. Sci. USA 92: 10683–10687.
  • Venter, U., J. Svaren, J. Schmitz, A. Schmid, and W. Hörz 1994. A nucleosome precludes binding of the transcription factor Pho4 in vivo to a critical target site in the PHO5 promoter. EMBO J. 13: 4848–4855.
  • Wu, R., R. J. Reece, and M. Ptashne 1996. Quantitation of putative activator-target affinities predicts transcriptional activating potentials. EMBO J. 15: 3951–3963.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.