19
Views
74
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Alkylpurine–DNA–N-Glycosylase Knockout Mice Show Increased Susceptibility to Induction of Mutations by Methyl Methanesulfonate

, , , , , , , , , , , , & show all
Pages 5828-5837 | Received 31 Mar 1998, Accepted 20 Jul 1998, Published online: 28 Mar 2023

REFERENCES

  • Bjelland, S., M. Bjørås, and E. Seeberg 1993. Excision of 3-methylguanine from alkylated DNA by 3-methyladenine DNA glycosylase I of Escherichia coli. Nucleic Acids Res. 21: 2045–2049.
  • Bodell, W. J., T. Aida, M. S. Berger, and M. L. Rosenblum 1985. Repair of O6-(2-chloroethyl) guanine mediates the biological effects of chloroethylnitrosoureas. Environ. Health Perspect. 62: 119–126.
  • Boiteux, S., O. Huisman, and J. Laval 1984. 3-Methyladenine residues in DNA induce the SOS function sfiA in Escherichia coli. EMBO J. 3: 2569–2573.
  • Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein using the principle of protein-dye binding. Anal. Biochem. 72: 248–254.
  • Bramson, J., T. O’Connor, and L. Panasci 1995. Effect of alkyl-N-purine DNA glycosylase overexpression on cellular resistance to bifunctional alkylating agents. Biochem. Pharmacol. 50: 39–44.
  • Brown, D. G., M. A. Willington, I. Findlay, and A. L. Muggleton-Harris 1992. Criteria that optimize the potential of murine embryonic stem cells for in vitro and in vivo developmental studies. In Vitro Cell. Dev. Biol. 28A: 773–778.
  • Cabral Neto, J. B., A. Gentil, R. E. Caseira Cabral, and A. Sarasin 1992. Mutation spectrum of heat-induced abasic sites on a single-stranded shuttle vector replicated in mammalian cells. J. Biol. Chem. 267: 19718–19723.
  • Cabral Neto, J. B., R. E. Caseira Cabral, A. M. F. Le Page, A. Sarasin, and A. Gentil 1994. Coding properties of a unique apurinic/apyrimidinic site replicated in mammalian cells. J. Biol. Chem. 240: 416–420.
  • Chen, J., B. Derfler, A. Maskati, and L. Samson 1990. Saccharomyces cerevisiae 3-methyladenine DNA glycosylase has homology to the AlkA glycosylase of E. coli and is induced in response to DNA alkylation damage. EMBO J. 9: 4569–4575.
  • Chinnasamy, N., J. A. Rafferty, I. Hickson, J. Ashby, H. Tinwell, G. P. Margison, T. M. Dexter, and L. Fairbairn 1997. O6-Benzylguanine potentiates the in vivo toxicity and clastogenicity of temozolomide and BCNU in mouse bone marrow. Blood 89: 1566–1573.
  • Chinnasamy, N., J. A. Rafferty, I. Hickson, L. S. Lashford, N. Thatcher, G. P. Margison, T. M. Dexter, and L. J. Fairbairn 1998. Chemoprotective gene therapy. II. Multilineage in vivo protection of haemopoiesis against the effects of an anti-tumour agent by expression of a mutant human O6-alkylguanine-DNA-alkyltransferase. Gene Ther. 5: 842–847.
  • Chung, F.-L., H.-J. C. Chen, and R. G. Nath 1996. Lipid peroxidation as a potential endogenous source for the formation of exocyclic DNA adducts. Carcinogenesis 17: 2105–2111.
  • Coquerelle, T., J. Dosch, and B. Kaina 1995. Overexpression of N-methylpurine-DNA glycosylase in Chinese hamster ovary cells renders them more sensitive to the production of chromosomal aberrations by methylating agents—a case of imbalanced DNA repair. Mutat. Res. 336: 9–17.
  • Dosanjh, M. K., R. Roy, S. Mitra, and B. Singer 1994. 1,N6-Ethenoadenine is preferred over 3-methyladenine as substrate by a cloned human N-methylpurine-DNA glycosylase (3-methyladenine-DNA glycosylase). Biochemistry 33: 1624–1628.
  • Elder, R. H., G. P. Margison, and J. A. Rafferty 1994. Differential inactivation of mammalian and Escherichia coli O6-alkylguanine-DNA alkyltransferases by O6-benzylguanine. Biochem. J. 298: 231–235.
  • El Ghissassi, F., A. Barbin, J. Nair, and H. Bartsch 1995. Formation of 1,N6-ethenoadenine and 3,N4-ethenocytosine by lipid peroxidation products and nucleic acid bases. Chem. Res. Toxicol. 8: 278–283.
  • Engelward, B. P., A. Dreslin, J. Christensen, D. Huszar, C. Kurahara, and L. Samson 1996. Repair-deficient 3-methyladenine DNA glycosylase homozygous mutant mouse cells have increased sensitivity to alkylation-induced chromosome damage and cell killing. EMBO J. 15: 945–952.
  • Engelward, B. P., G. Weeda, M. D. Wyatt, J. L. Broekhof, J. De Wit, I. Donker, J. M. Allan, B. Gold, J. H. J. Hoeijmakers, and L. D. Samson 1997. Base excision repair deficient mice lacking the Aag alkyladenine DNA glycosylase. Proc. Natl. Acad. Sci. USA 94: 13087–13092.
  • Fan, C.-Y., W. H. Butler, and P. J. O’Connor 1989. Cell and tissue specific localisation of O6-methylguanine in the DNA of rats given N-nitrosodimethylamine: effects of protein deficient diets. Carcinogenesis 10: 1967–1970.
  • Geleziunas, R., A. McQuillan, A. Malapetsa, M. Hutchinson, D. Kopriva, M. A. Wainberg, J. Hiscott, J. Bramson, and L. Panasci 1991. Increased DNA synthesis and repair-enzyme expression in lymphocytes from patients with chronic lymphocytic leukemia resistant to nitrogen mustards. J. Natl. Cancer Inst. 83: 557–564.
  • Hang, B., A. Chenna, S. Rao, and B. Singer 1996. 1,N6-Ethenoadenine and 3,N4-ethenocytosine are excised by separate human DNA glycosylases. Carcinogenesis 17: 155–157.
  • Hang, B., B. Singer, G. P. Margison, and R. H. Elder 1997. Targeted deletion of alkylpurine-DNA-N-glycosylase in mice eliminates repair of 1,N6-ethenoadenine and hypoxanthine but not of 3,N4-ethenocytosine or 8-oxoguanine. Proc. Natl. Acad. Sci. USA 94: 12869–12874.
  • Imperitori, L., G. Damia, P. Taverna, E. Garattini, L. Citti, L. Boldrini, and M. D’Incalci 1994. 3T3 NIH murine fibroblasts and B78 murine melanoma cells expressing the Escherichia coli N3-methyladenine-DNA glycosylase I do not become resistant to alkylating agents. Carcinogenesis 15: 533–537.
  • Jansen, J. G., H. Vrieling, A. A. van Zeeland, and G. R. Mohn 1992. The gene encoding hypoxanthine-guanine phosphoribosyltransferase as target for mutational analysis: PCR cloning and sequencing of the cDNA from the rat. Mutat. Res. 266: 105–116.
  • Kamiya, H., M. Suzuki, Y. Komatsu, H. Miura, K. Kikuchi, T. Sekaguchi, N. Murata, C. Masutani, F. Hanaoka, and E. Ohtsuka 1992. An abasic site analogue activates a c-Ha-ras gene by a point mutation at modified and adjacent positions. Nucleic Acids Res. 20: 4409–4415.
  • Kielman, M. F., R. Smits, and L. F. Bernini 1995. Structure of the mouse 3-methyladenine DNA glycosylase gene and exact localization upstream of the α-globin gene cluster on chromosome 11. Mamm. Genome 6: 499–504.
  • Klungland, A., L. Fairbairn, A. J. Watson, G. P. Margison, and E. Seeberg 1992. Expression of the E. coli 3-methyladenine DNA glycosylase I gene in mammalian cells reduces the toxic and mutagenic effects of methylating agents. EMBO J. 11: 4439–4444.
  • Klungland, A., M. Bjoras, E. Hoff, and E. Seeberg 1994. Increased removal of 3-alkyladenine reduces the frequencies of hprt mutations induced by methyl- and ethylmethane sulfonate in Chinese hamster fibroblast cells. Nucleic Acids Res. 22: 1670–1674.
  • Klungland, A., K. Lakke, E. Hoff, and E. Seeberg 1995. Spectrum of mutations induced by methyl and ethyl methanesulfonate at the hprt locus of normal and tag expressing Chinese hamster fibroblasts. Carcinogenesis 16: 1281–1285.
  • Laib, R. J., L. M. Gwinner, and H. M. Bolt 1981. DNA alkylation by vinyl chloride metabolites: etheno derivatives or 7-alkylation of guanine? Chem. Biol. Interact. 37: 219–231.
  • Larson, K., J. Sahm, R. Shenkar, and B. Strauss 1984. Methylation-induced blocks to in vitro DNA replication. Mutat. Res. 150: 77–84.
  • Lindahl, T. 1976. New class of enzymes acting on damaged DNA. Nature 259: 64–66.
  • Margison, G. P., and P. J. O’Connor 1973. Biological implications of the instability of the N-glycosidic bond of 3-methyldeoxyadenosine in DNA. Biochim. Biophys. Acta 331: 349–356.
  • Matijasevic, Z., W. J. Bodell, and D. B. Ludlum 1991. 3-Methyladenine DNA glycosylase activity in a glial cell line sensitive to the haloethylnitrosoureas in comparison with a resistant cell line. Cancer Res. 51: 1568–1570.
  • Matijasevic, Z., M. Boosalis, W. Mackay, L. Samson, and D. B. Ludlum 1993. Protection against chloroethylnitrosourea cytotoxicity by eukaryotic 3-methyladenine DNA glycosylase. Proc. Natl. Acad. Sci. USA 90: 11855–11859.
  • Moriya, M., W. Zhang, F. Johnson, and A. P. Grollman 1994. Mutagenic potency of exocyclic DNA adducts: marked differences between Escherichia coli and simian kidney cells. Proc. Natl. Acad. Sci. USA 91: 11899–11903.
  • Nair, J., A. Barbin, Y. Guichard, and H. Bartsch 1995. 1,N6-Ethenodeoxyadenosine and 3,N4-ethenodeoxycytidine in liver DNA from humans and untreated rodents detected by immunoaffinity/32P-postlabelling. Carcinogenesis 16: 613–617.
  • Nivard, M. J. M., A. Pastink, and E. W. Vogel 1992. Molecular analysis of mutations induced in the vermilion gene of Drosophila melanogaster by methyl methanesulfonate. Genetics 131: 673–682.
  • O’Connor, P. J., M. J. Capp, A. W. Craig, P. D. Lawley, and S. A. Shah 1972. Differences in the patterns of methylation in rat liver ribosomal ribonucleic acid after reaction in vivo with methyl methanesulphonate and N,N-dimethylnitrosamine. Biochem. J. 129: 519–524.
  • Op het Veld, C. W., M. Z. Zdzienicka, H. Vrieling, P. H. M. Lohman, and A. A. van Zeeland 1994. Molecular analysis of ethyl methanesulfonate-induced mutations at the hprt gene in the ethyl methanesulfonate-sensitive Chinese hamster cell line EM-C11 and its parental line CH09. Cancer Res. 54: 3001–3006.
  • Pandya, G., and M. Moriya 1996. 1,N6-Ethenodeoxyadenosine, a DNA adduct highly mutagenic in mammalian cells. Biochemistry 35: 11487–11492.
  • Rossi, A. M., A. D. Tates, A. A. van Zeeland, and H. Vrieling 1992. Molecular analysis of mutations affecting hprt mRNA splicing in human T-lymphocytes in vivo. Environ. Mol. Mutagen. 19: 7–13.
  • Routledge, M. N., D. A. Wink, L. K. Keefer, and A. Dipple 1994. DNA sequence changes induced by two nitric oxide donor drugs in the SupF assay. Chem. Res. Toxicol. 7: 628–632.
  • Sabapathy, K., M. Klemm, R. Jaenisch, and E. F. Wagner 1997. Regulation of ES cell differentiation by functional and conformational modulation of p53. EMBO J. 16: 6217–6229.
  • Saffhill, R., G. P. Margison, and P. J. O’Connor 1985. Mechanisms of carcinogenesis induced by alkylating agents. Biochim. Biophys. Acta 823: 111–145.
  • Saffhill, R., S. Fida, M. Bromley, and P. J. O’Connor 1988. Promutagenic alkyl lesions are induced in the tissue DNA of animals treated with ionising radiation. Hum. Toxicol. 7: 311–317.
  • Saparbaev, M., and J. Laval 1994. Excision of hypoxanthine from DNA containing dIMP residues by the Escherichia coli, yeast, rat, and human alkylpurine DNA glycosylases. Proc. Natl. Acad. Sci. USA 91: 5873–5877.
  • Saparbaev, M., K. Kleibl, and J. Laval 1995. Escherichia coli, Saccharomyces cerevisiae, rat and human 3-methyladenine DNA glycosylases repair 1,N6-ethenoadenine when present in DNA. Nucleic Acids Res. 23: 3750–3755.
  • Singer, B., and B. Hang 1997. What structural features determine repair enzyme specificity and mechanism in chemically modified DNA? Chem. Res. Toxicol. 10: 713–732.
  • Tates, A. D., F. J. van Dam, F. A. de Zwart, C. M. M. van Teylingen, and A. T. Natarajan 1994. Development of a cloning assay with high cloning efficiency to detect induction of 6-thioguanine-resistant lymphocytes in spleen of adult mice following in vivo inhalation exposure to 1,3-butadiene. Mutat. Res. 309: 299–306.
  • Tinwell, H., and J. Ashby 1989. Comparison of acridine orange and Giemsa stains in several mouse bone marrow micronucleus assays, including a triple dose study. Mutagenesis 4: 476–481.
  • Tybulewicz, V. L. J., C. E. Crawford, P. K. Jackson, R. T. Bronson, and R. C. Mulligan 1991. Neonatal lethality and lymphopenia in mice with a homozygous disruption of the c-abl protooncogene. Cell 65: 1153–1163.
  • Vrieling, H., J. W. I. M. Simons, and A. A. van Zeeland 1988. Nucleotide sequence determination of point mutations at the mouse HPRT locus using in vitro amplification of HPRT mRNA sequences. Mutat. Res. 198: 107–113.
  • White, G. R. M., C. H. Ockey, J. Brennand, and G. P. Margison 1986. Chinese hamster cells harbouring the Escherichia coli O6-alkylguanine alkyltransferase gene are less susceptible to sister chromatid exchange induction and chromosome damage by methylating agents. Carcinogenesis 7: 2077–2080.
  • Wilson, D. M.III, and L. H. Thompson 1997. Life without DNA repair. Proc. Natl. Acad. Sci. USA 94: 12754–12757.
  • Wood, R. D. 1996. DNA repair in eukaryotes. Annu. Rev. Biochem. 65: 135–167.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.