17
Views
22
CrossRef citations to date
0
Altmetric
Gene Expression

ADR1-Mediated Transcriptional Activation Requires the Presence of an Intact TFIID Complex

, , &
Pages 5861-5867 | Received 22 Apr 1998, Accepted 25 Jun 1998, Published online: 28 Mar 2023

REFERENCES

  • Apone, L. M., C. M. Virbasius, J. C. Reese, and M. R. Green 1996. Yeast TAFII90 is required for cell cycle progression through G2/M but not for general transcription activation. Genes Dev. 10: 2368–2380.
  • Ausubel, F. M., R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl 1994. Current protocols in molecular biology. John Wiley & Sons, Inc., New York, N.Y.
  • Bai, Y., G. M. Perez, J. M. Beechem, and P. A. Weil 1997. Structure-function analysis of TAF130: identification and characterization of a high-affinity TATA-binding protein interaction domain in the N terminus of yeast TAFII130. Mol. Cell. Biol. 17: 3081–3093.
  • Barlev, N. A., R. Candau, L. Wang, P. Darpino, N. Silverman, and S. L. Berger 1995. Characterization of physical interactions of the putative transcriptional adaptor, ADA2, with acidic activation domains and TATA-binding protein. J. Biol. Chem. 270: 19337–19344.
  • Bemis, L. T., and C. L. Denis 1988. Identification of functional regions in the yeast transcriptional activator ADR1. Mol. Cell. Biol. 8: 2125–2131.
  • Burley, S. K., and R. G. Roeder 1996. Biochemistry and structural biology of transcription factor IID. Annu. Rev. Biochem. 65: 769–799.
  • Cheng, C., N. Kacherovsky, K. M. Dombek, S. Camier, S. K. Thukral, E. Rhim, and E. T. Young 1994. Identification of potential target genes for Adr1p through characterization of essential nucleotides in UAS1. Mol. Cell. Biol. 14: 3842–3852.
  • Cherry, J. R. 1988. Expression and in vitro phosphorylation of the yeast transcriptional activator ADR1. Ph. D. thesis. University of New Hampshire, Durham.
  • Chiang, Y.-C., P. B. Komarnitsky, D. Chase, and C. L. Denis 1996. ADR1 activation domains contact the histone acetyltransferase GCN5 and core transcription factor TFIIB. J. Biol. Chem. 271: 32359–32365.
  • Christianson, T. W., R. S. Sikorski, M. Dante, J. H. Shero, and P. Hieter 1992. Multifunctional yeast high-copy-number shuttle vectors. Gene 110: 119–122.
  • Colgan, J., and J. L. Manley 1992. TFIID can be rate limiting in vivo for TATA-containing, but not TATA-lacking, RNA polymerase II promoters. Genes Dev. 6: 304–315.
  • Cook, W. J., D. Chase, D. C. Audino, and C. L. Denis 1994. Dissection of the ADR1 protein reveals multiple, functionally redundant activation domains interspersed with inhibitory regions: evidence for a repressor binding to the ADR1c region. Mol. Cell. Biol. 14: 629–640.
  • Cook, W. J., and C. L. Denis 1993. Identification of three genes required for the glucose-dependent transcription of the yeast transcriptional activator ADR1. Curr. Genet. 23: 192–200.
  • Cook, W. J., S. Mosley, D. C. Audino, A. Rovelli, D. Mullaney, G. Stewart, and C. L. Denis 1994. Mutations in the zinc-finger region of the yeast regulatory protein ADR1 affect both DNA binding and transcriptional activation. J. Biol. Chem. 269: 9374–9379.
  • Denis, C. L. 1987. The effects of ADR1 and CCR1 gene dosage on the regulation of the glucose-repressible alcohol dehydrogenase from Saccharomyces cerevisiae. Mol. Gen. Genet. 208: 101–106.
  • Denis, C. L., M. Ciriacy, and E. T. Young 1981. A positive regulatory gene is required for accumulation of the functional messenger RNA for the glucose-repressible alcohol dehydrogenase from Saccharomyces cerevisiae. J. Mol. Biol. 148: 355–368.
  • Denis, C. L., S. C. Fontaine, D. Chase, B. E. Kemp, and L. T. Bemis 1992. ADR1c mutations enhance the ability of ADR1 to activate transcription by a mechanism that is independent of effects on cyclic AMP-dependent protein kinase phosphorylation of Ser-230. Mol. Cell. Biol. 12: 1507–1514.
  • Di Mauro, E., G. Camilloni, L. Verdone, and M. Caserta 1993. DNA topoisomerase I controls the kinetics of promoter activation and DNA topology in Saccharomyces cerevisiae. Mol. Cell. Biol. 13: 6702–6710.
  • Dombek, K. M., and E. T. Young 1997. Cyclic AMP-dependent protein kinase inhibits ADH2 expression in part by decreasing expression of the transcription factor gene ADR1. Mol. Cell. Biol. 17: 1450–1458.
  • Draper, M. P., C. Salvadore, and C. L. Denis 1995. Identification of a mouse protein whose homolog in Saccharomyces cerevisiae is a component of the CCR4 transcriptional regulatory complex. Mol. Cell. Biol. 15: 3487–3495.
  • Drysdale, C. M., B. M. Jackson, R. McVeigh, E. R. Klebanow, Y. Bai, T. Kokubo, M. Swanson, Y. Nakatani, P. A. Weil, and A. G. Hinnebusch 1998. The Gcn4p activation domain interacts specifically in vitro with RNA polymerase II holoenzyme, TFIID, and the Adap-Gcn5p coactivator complex. Mol. Cell. Biol. 18: 1711–1724.
  • Gupta, R., A. Emili, G. Pan, H. Xiao, M. Shales, J. Greenblatt, and C. J. Ingles 1996. Characterization of the interaction between the acidic activation domain of VP16 and the RNA polymerase II initiation factor TFIIB. Nucleic Acids Res. 24: 2324–2330.
  • Hoey, T., R. O. J. Weinzierl, G. Gill, J.-L. Chen, B. D. Dynlacht, and R. Tjian 1993. Molecular cloning and functional analysis of Drosophila TAF110 reveal properties expected of coactivators. Cell 72: 247–260.
  • Klages, N., and M. Strubin 1995. Stimulation of RNA polymerase II transcription initiation by recruitment of TBP in vivo. Nature 374: 822–823.
  • Klebanow, E. R., D. Poon, S. Zhou, and P. A. Weil 1996. Isolation and characterization of TAF25, an essential yeast gene that encodes an RNA polymerase II-specific TATA-binding protein-associated factor. J. Biol. Chem. 271: 13706–13715.
  • Klemm, R., J. Goodrich, S. Zhou, and R. Tjian 1995. Molecular cloning and expression of the 32-kDa subunit of human TFIID reveals interactions with VP16 and TFIIB that mediate transcriptional activation. Proc. Natl. Acad. Sci. USA 92: 5788–5792.
  • Lee, T. I., and R. A. Young 1998. Regulation of gene expression by TBP-associated proteins. Genes Dev. 12: 1398–1408.
  • Moqtaderi, Z., Y.-L. Bai, D. Poon, P. Weil, and K. Struhl 1996. TBP-associated factors are not generally required for transcriptional activation in yeast. Nature 383: 188–191.
  • Moqtaderi, Z., J. DePaulo Yale, K. Struhl, and S. Buratowski 1996. Yeast homologues of higher eucaryotic TFIID subunits. Proc. Natl. Acad. Sci. USA 93: 14654–14658.
  • Pavlik, P., M. Simon, T. Shuster, and H. Ruis 1993. The glycerol kinase (GUT1) gene of Saccharomyces cerevisiae: cloning and characterization. Curr. Genet. 24: 21–25.
  • Poon, D., Y.-L. Bai, A. M. Campbell, S. Bjorklund, Y.-J. Kim, S. Zhou, R. D. Kornberg, and P. A. Weil 1995. Identification and characterization of a TFIID-like multiprotein complex from Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 92: 8224–8228.
  • Ptashne, M., and A. Gann 1997. Transcriptional activation by recruitment. Nature 386: 569–577.
  • Sambrook, J., E. F. Fritsch, and T. Maniatis 1989. Molecular cloning: a laboratory manual2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Sauer, F., D. A. Wassarman, G. M. Rubin, and R. Tjian 1996. TAFIIs mediate activation of transcription in the Drosophila embryo. Cell 87: 1271–1284.
  • Shen, W. C., and M. R. Green 1997. Yeast TAFII145 functions as a core promoter selectivity factor, not a general coactivator. Cell 90: 615–624.
  • Shykind, B. M., J. Kim, L. Stewart, J. J. Champoux, and P. A. Sharp 1997. Topoisomerase I enhances TFIID-TFIIA complex assembly during activation of transcription. Genes Dev. 11: 397–407.
  • Simon, M., G. Adam, W. Rapatz, W. Spevak, and H. Ruis 1991. The Saccharomyces cerevisiae ADR1 gene is a positive regulator of transcription of genes encoding peroxisomal proteins. Mol. Cell. Biol. 11: 699–704.
  • Tansey, W. P., and W. Herr 1997. TAFIIs: guilt by association? Cell 88: 729–732.
  • Thukral, S. K., A. Eisen, and E. T. Young 1991. Two monomers of yeast transcription factor ADR1 bind a palindromic sequence symmetrically to activate ADH2 expression. Mol. Cell. Biol. 11: 1566–1577.
  • Thukral, S. K., M. A. Tavianini, H. Blumberg, and E. T. Young 1989. Localization of a minimal binding domain and activation regions in yeast regulatory protein ADR1. Mol. Cell. Biol. 9: 2360–2369.
  • Vallari, R. C., W. J. Cook, D. C. Audino, M. J. Morgan, D. E. Jensen, A. P. Laredano, and C. L. Denis 1992. Glucose repression of the yeast ADH2 gene occurs through multiple mechanisms, including control of the protein synthesis of its transcriptional activator, ADR1. Mol. Cell. Biol. 12: 1663–1673.
  • Verdone, L., G. Camilloni, E. Di Mauro, and M. Caserta 1996. Chromatin remodeling during Saccharomyces cerevisiae ADH2 gene activation. Mol. Cell. Biol. 16: 1978–1988.
  • Verdone, L., F. Cesari, C. L. Denis, E. Di Mauro, and M. Caserta 1997. Factors affecting S. cerevisiae ADH2 chromatin remodeling and transcription. J. Biol. Chem. 272: 30828–30834.
  • Walker, S. S., J. C. Reese, L. M. Apone, and M. R. Green 1996. Transcription activation in cells lacking TAFIIs. Nature 383: 185–188.
  • Walker, S. S., W. C. Shen, J. C. Reese, L. M. Apone, and M. R. Green 1997. Yeast TAFII145 required for transcription of G1/S cyclin genes and regulated by the cellular growth state. Cell 90: 607–614.
  • Woontner, M., P. A. Wade, J. Bonner, and J. A. Jaehning 1991. Transcriptional activation in an improved whole-cell extract from Saccharomyces cerevisiae. Mol. Cell. Biol. 11: 4555–4560.
  • Wu, Y., R. J. Reece, and M. Ptashne 1996. Quantitation of putative activator-target affinities predicts transcriptional activating potential. EMBO J. 15: 3951–3963.
  • Yu, J., M. S. Donoviel, and E. T. Young 1989. Adjacent upstream activation sequence elements synergistically regulate transcription of ADH2 in Saccharomyces cerevisiae. Mol. Cell. Biol. 9: 34–42.
  • Zawel, L., and D. Reinberg 1995. Common themes in assembly and function of eukaryotic transcription complexes. Annu. Rev. Biochem. 64: 533–561.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.