19
Views
83
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Mechanistic Principles in NR Box-Dependent Interaction between Nuclear Hormone Receptors and the Coactivator TIF2

, &
Pages 6001-6013 | Received 22 Dec 1997, Accepted 06 Jul 1998, Published online: 28 Mar 2023

REFERENCES

  • Anzick, S. L., J. Kononen, R. L. Walker, D. O. Azorsa, M. M. Tanner, X. Y. Guan, G. Sauter, O. P. Kallioniemi, J. M. Trent, and P. S. Meltzer 1997. AIB1, a steroid receptor coactivator amplified in breast and ovarian cancer. Science 277: 965–968.
  • Baniahmad, A., X. Leng, T. P. Burris, S. Y. Tsai, M. J. Tsai, and B. W. O’Malley 1995. The tau 4 activation domain of the thyroid hormone receptor is required for release of a putative corepressor(s) necessary for transcriptional silencing. Mol. Cell. Biol. 15: 76–86.
  • Bannister, A. J., and T. Kouzarides 1996. The CBP co-activator is a histone acetyltransferase. Nature (London) 384: 641–643.
  • Barettino, D., M. M. Vivanco Ruiz, and H. G. Stunnenberg 1994. Characterization of the ligand-dependent transactivation domain of thyroid hormone receptor. EMBO J. 13: 3039–3049.
  • Bourguet, W., M. Ruff, P. Chambon, H. Gronemeyer, and D. Moras 1995. Crystal structure of the ligand-binding domain of the human nuclear receptor RXR-alpha. Nature (London) 375: 377–382.
  • Brzozowski, A. M., A. C. W. Pike, Z. Dauter, R. E. Hubbard, T. Bonn, O. Engström, L. Öhman, G. L. Greene, J. Å. Gustafsson, and M. Carlquist 1997. Molecular basis of agonism and antagonism in the oestrogen receptor. Nature (London) 389: 753–758.
  • Cavailles, V., S. Dauvois, F. L’Horset, G. Lopez, S. Hoare, P. J. Kushner, and M. G. Parker 1995. Nuclear factor RIP140 modulates transcriptional activation by the estrogen receptor. EMBO J. 14: 3741–3751.
  • Chen, H. W., R. J. Lin, R. L. Schiltz, D. Chakravarti, A. Nash, L. Nagy, M. L. Privalsky, Y. Nakartani, and R. M. Evans 1997. Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and forms a multimeric activation complex with P/CAF and CBP/p300. Cell 90: 569–580.
  • Chen, J. D., and R. M. Evans 1995. A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature (London) 377: 454–457.
  • Collingwood, T. N., A. Butler, Y. Tone, R. J. Clifton-Bligh, M. G. Parker, and V. K. Chatterjee 1997. Thyroid hormone-mediated enhancement of heterodimer formation between thyroid hormone receptor beta and retinoid X receptor. J. Biol. Chem. 272: 13060–13065.
  • Damm, K., R. A. Heyman, K. Umesono, and R. M. Evans 1993. Functional inhibition of retinoic acid response by dominant negative retinoic acid receptor mutants. Proc. Natl. Acad. Sci. USA 90: 2989–2993.
  • Danielian, P. S., R. White, J. A. Lees, and M. G. Parker 1992. Identification of a conserved region required for hormone dependent transcriptional activation by steroid hormone receptors. EMBO J. 11: 1025–1033.
  • Ding, X. F., C. M. Anderson, H. Ma, H. Hong, R. M. Uht, P. J. Kushner, and M. R. Stallcup 1998. Nuclear receptor-binding sites of coactivator glucocorticoid receptor interacting protein 1 (GRIP1) and steroid coactivator 1 (SRC-1): multiple motifs with different binding specificities. Mol. Endocrinol. 12: 302–313.
  • Durand, B., M. Saunders, C. Gaudon, B. Roy, R. Losson, and P. Chambon 1994. Activation function 2 (AF-2) of retinoic acid receptor and 9-cis retinoic acid receptor: presence of a conserved autonomous constitutive activating domain and influence of the nature of the response element on AF-2 activity. EMBO J. 13: 5370–5382.
  • Forman, B. M., K. Umesono, J. Chen, and R. M. Evans 1995. Unique response pathways are established by allosteric interactions among nuclear hormone receptors. Cell 81: 541–550.
  • Glass, C. K., D. W. Rose, and M. G. Rosenfeld 1997. Nuclear receptor coactivators. Curr. Opin. Cell Biol. 9: 222–232.
  • Hankinson, O. 1995. The aryl hydrocarbon receptor complex. Annu. Rev. Pharmacol. Toxicol. 35: 307–340.
  • Heery, D. M., E. Kalkhoven, S. Hoare, and M. G. Parker 1997. A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature (London) 387: 733–736.
  • Heinzel, T., R. M. Lavinsky, T. M. Mullen, M. Söderström, C. D. Laherty, J. Torchia, W. M. Yang, G. Brard, S. D. Ngo, J. R. Davie, E. Seto, R. N. Eisenman, D. W. Rose, C. K. Glass, and M. G. Rosenfeld 1997. A complex containing N-CoR, mSin3 and histone deacetylase mediates transcriptional repression. Nature (London) 387: 43–48.
  • Hong, H., K. Kohli, M. J. Garabedian, and M. R. Stallcup 1997. GRIP1, a transcriptional coactivator for teh AF-2 transactivation domain of steroid, thyroid, retinoid, and vitamin D receptors. Mol. Cell. Biol. 17: 2735–2744.
  • Hong, H., K. Kohli, A. Trivedi, D. L. Johnson, and M. R. Stallcup 1996. GRIP1, a novel mouse protein that serves as a transcriptional coactivator in yeast for the hormone binding domains of steroid receptors. Proc. Natl. Acad. Sci. USA 93: 4948–4952.
  • Hörlein, A. J., A. M. Näär, T. Heinzel, J. Torchia, B. Gloss, R. Kurokawa, A. Ryan, Y. Kamei, M. Söderström, C. K. Glass, and M. G. Rosenfeld 1995. Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature (London) 377: 397–404.
  • Horwitz, K. B., T. A. Jackson, D. L. Rain, J. K. Richer, G. S. Takimoto, and L. Tung 1996. Nuclear receptor coactivators and corepressors. Mol. Endocrinol 10: 1167–1177.
  • Kalkhoven, E., J. E. Valentine, D. M. Heery, and M. G. Parker 1998. Isoforms of steroid receptor co-activator 1 differ in their ability to potentiate transcription by the estrogen receptor. EMBO J. 17: 232–243.
  • Kurokawa, R., J. DiRenzo, M. Boehm, J. Sugarman, B. Gloss, M. G. Rosenfeld, R. A. Heyman, and C. K. Glass 1994. Regulation of retinoid signalling by receptor polarity and allosteric control of ligand binding. Nature (London) 371: 528–531.
  • Kurokawa, R., M. Söderström, A. Hörlein, S. Halachmi, M. Brown, M. G. Rosenfeld, and C. K. Glass 1995. Polarity-specific activities of retinoic acid receptors determined by a co-repressor. Nature (London) 377: 451–454.
  • Le Douarin, B., A. L. Nielsen, J. M. Garnier, H. Ichinose, F. Jeanmougin, R. Losson, and P. Chambon 1996. A possible involvement of TIF1-alpha and TIF1-beta in the epigenetic control of transcription by nuclear receptors. EMBO J. 15: 6701–6715.
  • L’Horset, F., S. Dauvois, D. M. Heery, V. Cavailles, and M. G. Parker 1996. RIP140 interacts with multiple nuclear receptors by means of two distinct sites. Mol. Cell. Biol. 16: 6029–6036.
  • Li, C., J. W. Schwabe, E. Banayo, and R. M. Evans 1997. Coexpression of nuclear receptor partners increases their solubility and biological activities. Proc. Natl. Acad. Sci. USA 94: 2278–2283.
  • Li, H., P. J. Gomes, and J. D. Chen 1997. RAC3, a steroid/nuclear receptor-associated coactivator that is related to SRC-1 and TIF-2. Proc. Natl. Acad. Sci. USA 94: 8479–8484.
  • Mangelsdorf, D. J., and R. M. Evans 1995. The RXR heterodimers and orphan receptors. Cell 83: 841–850.
  • Oñate, S. A., S. Y. Tsai, M. J. Tsai, and B. W. O’Malley 1995. Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science 270: 1354–1357.
  • Renaud, J. P., N. Rochel, M. Ruff, V. Vivat, P. Chambon, H. Gronemeyer, and D. Moras 1995. Crystal structure of the RAR-gamma ligand-binding bound to all-trans retinoic acid. Nature (London) 378: 681–689.
  • Sande, S., and M. L. Privalsky 1996. Identification of TRACs (T-3 receptor-associating cofactors), a family of cofactors that associate with, and modulate the activity of, nuclear hormone receptors. Mol. Endocrinol. 10: 813–825.
  • Schulman, I. G., H. Juguilon, and R. M. Evans 1996. Activation and repression by nuclear hormone receptors: hormone modulates an equilibrium between active and repressive states. Mol. Cell. Biol. 16: 3807–3813.
  • Schulman, I. G., C. Li, J. W. Schwabe, and R. M. Evans 1997. The phantom ligand effect: allosteric control of transcription by the retinoic X receptor. Genes Dev. 11: 299–308.
  • Seol, W., M. J. Mahon, Y. K. Lee, and D. D. Moore 1996. Two receptor interacting domains in the nuclear hormone receptor corepressor RIP13/N-CoR. Mol. Endocrinol. 10: 1646–1655.
  • Shibata, H., Z. Nawaz, S. Y. Tsai, B. W. Omalley, and M. J. Tsai 1997. Gene silencing by chicken ovalbumin upstream promoter-transcription factor I (COUP TFI) is mediated by transcriptional corepressors, nuclear receptor-corepressor (N-CoR) and silencing mediator for retinoic acid receptor and thyroid hormone receptor (SMRT). Mol. Endocrinol. 11: 714–724.
  • Spencer, T. E., G. Jenster, M. M. Burcin, C. D. Allis, J. X. Zhou, C. A. Mizzen, N. J. McKenna, S. A. Onate, S. Y. Tsai, M. J. Tsai, and B. W. O’Malley 1997. Steroid receptor coactivator-1 is a histone acetyltransferase. Nature (London) 389: 194–198.
  • Takeshita, A., P. M. Yen, S. Misiti, G. R. Cardona, Y. Liu, and W. W. Chin 1996. Molecular cloning and properties of a full-length putative thyroid hormone receptor coactivator. Endocrinology 137: 3594–3597.
  • Toney, J. H., L. Wu, A. E. Summerfield, G. Sanyal, B. M. Forman, J. Zhu, and H. H. Samuels 1993. Conformational changes in chicken thyroid hormone receptor alpha 1 induced by binding to ligand or to DNA. Biochemistry 32: 2–6.
  • Torchia, J., D. W. Rose, J. Inostroza, Y. Kamei, S. Westin, C. K. Glass, and M. G. Rosenfeld 1997. The transcriptional co-activator p/CIP binds CBP and mediates nuclear-receptor function. Nature (London) 387: 677–684.
  • Treuter, E., T. Albrektsen, L. Johansson, J. Leers, and J. Å. Gustafsson 1998. A regulatory role for RIP140 in nuclear receptor activation. Mol. Endocrinol. 12: 864–881.
  • Truss, M., J. Bartsch, A. Schelbert, R. J. Hache, and M. Beato 1995. Hormone induces binding of receptors and transcription factors to a rearranged nucleosome on the MMTV promoter in vivo. EMBO J. 14: 1737–1751.
  • Voegel, J. J., M. J. Heine, C. Zechel, P. Chambon, and H. Gronemeyer 1996. TIF2, a 160 kDa transcriptional mediator for the ligand-dependent activation function AF-2 of nuclear receptors. EMBO J. 15: 3667–3675.
  • Voegel, J. J., M. J. S. Heine, M. Tini, V. Vivat, P. Chambon, and H. Gronemeyer 1998. The coactivator TIF2 contains three nuclear receptor-binding motifs and mediates transcription through CBP binding-dependent and -independent pathways. EMBO J. 17: 507–519.
  • vom Baur, E., C. Zechel, D. Heery, M. J. Heine, J. M. Garnier, V. Vivat, B. Le Douarin, H. Gronemeyer, P. Chambon, and R. Losson 1996. Differential ligand-dependent interactions between the AF-2 activating domain of nuclear receptors and the putative transcriptional intermediary factors mSUG1 and TIF1. EMBO J. 15: 110–124.
  • Wagner, R. L., J. W. Apriletti, M. E. McGrath, B. L. West, J. D. Baxter, and R. J. Fletterick 1995. A structural role for hormone in the thyroid hormone receptor. Nature (London) 378: 690–697.
  • Wiebel, F. F., and J. A. Gustafsson 1997. Heterodimeric interaction between retinoid X receptor alpha and orphan nuclear receptor OR1 reveals dimerization-induced activation as a novel mechanism of nuclear receptor activation. Mol. Cell. Biol. 17: 3977–3986.
  • Wolffe, A. P., and D. Pruss 1996. Targeting chromatin disruption: transcription regulators that acetylate histones. Cell 84: 817–819.
  • Wong, J., Y. B. Shi, and A. P. Wolffe 1995. A role for nucleosome assembly in both silencing and activation of the Xenopus TR beta A gene by the thyroid hormone receptor. Genes Dev. 9: 2696–2711.
  • Yao, T. P., G. Ku, N. Zhou, R. Scully, and D. M. Livingston 1996. The nuclear hormone receptor activator SRC-1 is a specific target of p300. Proc. Natl. Acad. Sci. USA 93: 10626–10631.
  • Yeh, S., and C. Chang 1996. Cloning and characterization of a specific coactivator, ARA70, for the androgen receptor in human prostate cells. Proc. Natl. Acad. Sci. USA 93: 5517–5521.
  • Zamir, I., H. P. Harding, G. B. Atkins, A. Horlein, C. K. Glass, M. G. Rosenfeld, and M. A. Lazar 1996. A nuclear hormone receptor corepressor mediates transcriptional silencing by receptors with distinct repression domains. Mol. Cell. Biol. 16: 5458–5465.
  • Zamir, I., J. Zhang, and M. A. Lazar 1997. Stoichiometric and steric principles governing repression by nuclear hormone receptors. Genes Dev. 11: 835–846.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.