6
Views
67
CrossRef citations to date
0
Altmetric
Gene Expression

The Immunoglobulin Heavy Chain Locus Control Region Increases Histone Acetylation along Linked c-myc Genes

, , &
Pages 6281-6292 | Received 07 Apr 1998, Accepted 06 Aug 1998, Published online: 28 Mar 2023

REFERENCES

  • Albert, T., J. Mautner, J. O. Funk, K. Hortnagel, A. Pullner, and D. Eick 1997. Nucleosomal structures of c-myc promoters with transcriptionally engaged RNA polymerase II. Mol. Cell. Biol. 17: 4363–4371.
  • Alberts, A. S., O. Geneste, and R. Treisman 1998. Activation of SRF-regulated chromosomal templates by Rho-family GTPases requires a signal that also induces H4 hyperacetylation. Cell 92: 475–487.
  • ar-Rusdi, A., K. Nishikura, J. Erikson, R. Watt, G. Rovera, and C. M. Croce 1983. Differential expression of the translocated and untranslocated c-myc oncogene in Burkitt lymphoma. Science 222: 390–393.
  • Bannister, A. J., and T. Kouzarides 1996. The CBP co-activator is a histone acetyltransferase. Nature 384: 641–643.
  • Bartsch, J., M. Truss, J. Bode, and M. Beato 1996. Moderate increase in histone acetylation activates the mouse mammary tumor virus promoter and remodels its nucleosome structure. Proc. Natl. Acad. Sci. USA 93: 10741–10746.
  • Bentley, D. L., and M. Groudine 1986. Novel promoter upstream of the human c-myc gene and regulation of c-myc expression in B-cell lymphomas. Mol. Cell. Biol. 6: 3481–3489.
  • Bentley, D. L., and M. Groudine 1986. A block to elongation is largely responsible for decreased transcription of c-myc in differentiated HL60 cells. Nature 321: 702–706.
  • Braunstein, M., R. E. Sobel, C. D. Allis, B. M. Turner, and J. R. Broach 1996. Efficient transcriptional silencing in Saccharomyces cerevisiae requires a heterochromatin histone acetylation pattern. Mol. Cell. Biol. 16: 4349–4356.
  • Brown, S. A., and R. E. Kingston 1997. Disruption of downstream chromatin directed by a transcriptional activator. Genes Dev. 11: 3116–3121.
  • Brownwell, J. E., J. Zhou, T. Ranalli, R. Kobayashi, D. G. Edmondson, S. Y. Roth, and C. D. Allis 1996. Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell 84: 843–851.
  • Cory, S. 1986. Activation of cellular oncogenes in hemopoietic cells by chromosome translocation. Adv. Cancer Res. 47: 189–234.
  • Dyson, P. J., T. D. Littlewood, A. Forster, and T. H. Rabbitts 1985. Chromatin structure of transcriptionally active and inactive human c-myc alleles. EMBO J. 4: 2885–2891.
  • Festenstein, R., M. Tolaini, P. Corbella, C. Mamalaki, J. Parrington, M. Fox, A. Miliou, M. Jones, and D. Kioussis 1996. Locus control region function and heterochromatin-induced position effect variegation. Science 271: 1123–1125.
  • Giannini, S. L., M. Singh, C.-F. Calvo, G. Ding, and B. K. Birshtein 1993. DNA regions flanking the mouse Ig 3′ a enhancer are differentially methylated and DNase I hypersensitive during B cell differentiation. J. Immunol. 150: 1772–1780.
  • Grunstein, M. 1997. Histone acetylation in chromatin structure and transcription. Nature 389: 349–352.
  • Gu, W., and R. G. Roeder 1997. Activation of p53 sequence-specific DNA binding by acetylation of the p53 carboxy-terminal domain. Cell 90: 595–606.
  • Hebbes, T. R., A. W. Thorne, and C. Crane-Robinson 1988. A direct link between histone acetylation and transcriptionally active chromatin. EMBO J. 7: 1395–1402.
  • Hebbes, T. R., A. L. Clayton, A. W. Thorne, and C. Crane-Robinson 1994. Core histone hyperacetylation co-maps with generalized DNase 1 sensitivity in the chicken β-globin chromosomal domain. EMBO J. 13: 1823–1830.
  • Hendzel, M. J., J.-M. Sun, H. Y. Chen, J. B. Rattner, and J. R. Davie 1994. Histone acetyltransferase is associated with the nuclear matrix. J. Biol. Chem. 269: 22894–22901.
  • Imhof, A., X.-J. Yang, V. V. Ogryzko, Y. Nakatani, A. P. Wolffe, and H. Ge 1997. Acetylation of general transcription factors by histone acetyltransferases. Curr. Biol. 7: 689–692.
  • Izban, M. G., and D. S. Luse 1991. Transcription on nucleosomal templates by RNA polymerase II in vitro: inhibition of elongation with enhancement of sequence-specific pausing. Genes Dev. 5: 683–696.
  • Kornberg, R. D., and Y. Lorch 1995. Interplay between chromatin structure and transcription. Curr. Opin. Cell Biol. 7: 371–375.
  • Krumm, A., T. Meulia, M. Brunvand, and M. Groudine 1992. The block to transcriptional elongation within the human c-myc gene is determined in the promoter-proximal region. Genes Dev. 6: 2201–2213.
  • Krumm, A., L. Madisen, X.-J. Yang, R. Goodman, Y. Nakatani, and M. Groudine. Long distance transcriptional enhancement by the acetyltransferase PCAF. Submitted for publication.
  • Kuo, M.-H., J. Zhou, P. Jambeck, M. E. A. Churchill, and C. D. Allis 1998. Histone acetyltransferase activity of yeast Gcn5p is required for the activation of target genes in vivo. Genes Dev. 12: 627–639.
  • Laybourn, P. J., and J. T. Kadonaga 1991. Role of nucleosomal cores and histone H1 in regulation of transcription by RNA polymerase II. Science 254: 238–245.
  • Lee, D. Y., J. J. Hayes, D. Pruss, and A. P. Wolffe 1993. A positive role for histone acetylation in transcription factor access to nucleosomal DNA. Cell 72: 73–84.
  • Madisen, L., and M. Groudine 1994. Identification of a locus control region in the immunoglobulin heavy-chain locus that deregulates c-myc expression in plasmacytoma and Burkitt’s lymphoma cells. Genes Dev. 8: 2212–2226.
  • Magrath, I. 1990. The pathogenesis of Burkitt’s lymphoma. Adv. Cancer Res. 55: 133–234.
  • Majumder, S., and M. L. DePamphilis 1995. A unique role for enhancers is revealed during early mouse development. BioEssays 17: 879–889.
  • Marshall, N. F., and D. H. Price 1995. Purification of P-TEFb, a transcription factor required for the transition into productive elongation. J. Biol. Chem. 270: 12335–12338.
  • Michaelson, J. S., S. L. Giannini, and B. K. Birshtein 1995. Identification of 3′α-hs4, a novel Ig heavy chain enhancer element regulated at multiple stages of B cell differentiation. Nucleic Acids Res. 23: 975–981.
  • Mizzen, C. A., X. J. Yang, T. Kokubo, J. E. Brownell, A. J. Bannister, T. Owen-Hughes, J. Workman, L. Wang, S. L. Berger, T. Kouzarides, Y. Nakatani, and C. D. Allis 1996. The TAF(II)250 subunit of TFIID has histone acetyltransferase activity. Cell 87: 1261–1270.
  • Nightingale, K. P., R. E. Wellinger, J. M. Sogo, and P. B. Becker 1998. Histone acetylation facilitates RNA polymerase II transcription of the Drosophila hsp26 gene in chromatin. EMBO J. 17: 2865–2876.
  • Nishikura, K., A. ar-Rushdi, J. Erikson, R. Watt, G. Rovera, and C. M. Croce 1983. Differential expression of the normal and of the translocated human c-myc oncogenes in B cells. Proc. Natl. Acad. Sci. USA 80: 4822–4826.
  • Ogryzko, V. V., R. L. Schiltz, V. Russanova, B. H. Howard, and Y. Nakatani 1996. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87: 953–959.
  • O’Neill, L. P., and B. M. Turner 1995. Histone H4 acetylation distinguishes coding regions of the human genome from heterochromatin in a differentiation-dependent but transcription-independent manner. EMBO J. 14: 3946–3957.
  • Orphanides, G., T. Lagrange, and D. Reinberg 1996. The general transcription factors of RNA polymerase II. Genes Dev. 10: 2657–2683.
  • Paranjape, S. M., R. T. Kamakaka, and J. T. Kadonaga 1994. Role of chromatin structure in the regulation of transcription by RNA polymerase II. Annu. Rev. Biochem. 63: 265–297.
  • Pasqualini, J. R., R. Sterner, P. Mercat, and V. G. Allfrey 1989. Estradiol enhanced acetylation of nuclear high mobility group proteins of the uterus of newborn guinea pigs. Biochem. Biophys. Res. Commun. 161: 1260–1266.
  • Pazin, M. J., and J. T. Kadonaga 1997. What’s up and down with histone deacetylation and transcription? Cell 89: 325–328.
  • Pullner, A., J. Mautner, T. Albert, and D. Eick 1996. Nucleosome structure of active and inactive c-myc genes. Proc. Natl. Acad. Sci. USA 271: 31452–31457.
  • Rabbitts, T. H., P. H. Hamlyn, and R. Baer 1983. Altered nucleotide sequences of a translocated c-myc gene in Burkitt lymphoma. Nature 306: 760–765.
  • Reines, D., J. W. Conaway, and R. C. Conaway 1996. The RNA polymerase II general elongation factors. Trends Biochem. Sci. 21: 351–355.
  • Sheridan, P. L., T. P. Mayall, E. Verdin, and K. A. Jones 1997. Histone acetyltransferases regulate HIV-1 enhancer activity in vitro. Genes Dev. 11: 3327–3340.
  • Siebenlist, U., L. Hennighausen, J. Battey, and P. Leder 1984. Chromatin structure and protein binding in the putative regulatory region of the c-myc gene in Burkitt lymphoma. Cell 37: 381–391.
  • Siebenlist, U., P. Bressler, and K. Kelly 1988. Two distinct mechanisms of transcriptional control operate on c-myc during differentiation of HL60 cells. Mol. Cell. Biol. 8: 867–874.
  • Spencer, C. A., and M. Groudine 1990. Molecular analysis of the c-myc transcription elongation block. Ann. N. Y. Acad. Sci. 599: 12–28.
  • Spencer, C. A., R. C. LeStrange, U. Novak, W. S. Hayward, and M. Groudine 1990. The block to transcription elongation is promoter dependent in normal and Burkitt’s lymphoma c-myc alleles. Genes Dev. 4: 75–88.
  • Spencer, C. A., and M. Groudine 1991. Control of c-myc regulation in normal and neoplastic cells. Adv. Cancer Res. 56: 1–48.
  • Steger, D. J., and J. L. Workman 1996. Remodeling chromatin structures for transcription: what happens to the histones? BioEssays 18: 875–884.
  • Strobl, L. J., and D. Eick 1992. Hold back of RNA polymerase II at the transcription start site mediates down regulation of c-myc in vivo. EMBO J. 11: 3307–3314.
  • Strobl, L. J., F. Kohlhuber, J. Mautner, A. Polack, and D. Eick 1993. Absence of a paused transcription complex from the c-myc P2 promoter of the translocation chromosome in Burkitt’s lymphoma cells: implication for the c-myc P1/P2 promoter shift. Oncogene 8: 1437–1447.
  • Sugden, B., K. Marsh, and J. Yates 1985. A vector that replicates as a plasmid and can be efficiently selected in B-lymphoblasts transformed by Epstein Barr virus. Mol. Cell. Biol. 5: 410–413.
  • Svaren, J., and W. Horz 1996. Regulation of gene expression by nucleosomes. Curr. Opin. Gen. Dev. 6: 164–170.
  • Taub, R., C. Moulding, J. Battey, W. Murphy, T. Vasicek, G. M. Lenoir, and P. Leder 1984. Activation and somatic mutation of the translocated c-myc gene in Burkitt lymphoma cells. Cell 36: 339–348.
  • Tsukiyama, T., and C. Wu 1997. Chromatin remodeling and transcription. Curr. Opin. Gen. Dev. 7: 182–191.
  • Turner, B. M. 1993. Decoding the nucleosome. Cell 75: 5–8.
  • Ura, K., J. J. Hayes, and A. P. Wolffe 1995. A positive role for nucleosome mobility in the transcriptional activity of chromatin templates: restriction by linker histones. EMBO J. 14: 3752–3765.
  • van Holde, K., and J. Zlatanova 1996. What determines the folding of the chromatin fiber? Proc. Natl. Acad. Sci. USA 93: 10548–10555.
  • Van Lint, C., S. Emiliani, M. Ott, and E. Verdin 1996. Transcriptional activation and chromatin remodeling of the HIV-1 promoter in response to histone acetylation. EMBO J. 15: 1112–1120.
  • Vettese-Dadey, M., P. A. Grant, T. R. Hebbes, C. Crane-Robinson, C. D. Allis, and J. L. Workman 1996. Acetylation of histone H4 plays a primary role in enhancing transcription factor binding to nucleosomal DNA in vitro. EMBO J. 15: 2508–2518.
  • Walters, M. C., W. Magis, S. Fiering, J. Eidemiller, D. Scalzo, M. Groudine, and D. I. K. Martin 1996. Transcriptional enhancers act in cis to suppress position-effect variegation. Genes Dev. 10: 185–195.
  • Wolffe, A. P. 1994. Nucleosome positioning and modification: chromatin structures that potentiate transcription. Trends Biochem. Sci. 19: 240–244.
  • Wolffe, A. P., J. Wong, and D. Pruss 1997. Activators and repressors: making use of chromatin to regulate transcription. Genes Cells 2: 291–302.
  • Yang, J., S. R. Bauer, J. F. Mushinski, and K. B. Marcu 1985. Chromosome translocations clustered 5′ of the murine c-myc gene qualitatively affect promoter usage: implications for the site of normal c-myc regulation. EMBO J. 4: 1441–1447.
  • Yang, X.-J., V. V. Ogryzko, J. Nishikawa, B. H. Howard, and Y. Nakatani 1996. A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A. Nature 382: 319–324.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.