18
Views
106
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Persistent Interactions of Core Histone Tails with Nucleosomal DNA following Acetylation and Transcription Factor Binding

, , , , &
Pages 6293-6304 | Received 18 Mar 1998, Accepted 31 Jul 1998, Published online: 28 Mar 2023

REFERENCES

  • Alland, L., R. Muhle, Hou H., Jr., J. Potes, L. Chin, N. Schreiber-Agus, and R. A. DePinho 1997. Role for N-CoR and histone deacetylase in Sin-3-mediated transcriptional repression. Nature 387: 49–55.
  • Allegra, P., R. Sterner, D. F. Clayton, and V. G. Allfrey 1987. Affinity chromatographic purification of nucleosomes containing transcriptionally active DNA sequences. J. Mol. Biol. 196: 379–388.
  • Allfrey, V. G., R. Faulkner, and A. E. Mirsky 1964. Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc. Natl. Acad. Sci. USA 51: 786–794.
  • Angelov, D., V. Mutskov, and S. Dimitrov. Unpublished data.
  • Angelov, D., V. Stefanovsky, S. I. Dimitrov, V. Russanova, and I. Pashev 1988. A picosecond UV laser induced protein-DNA crosslinking in reconstituted nucleohistones, nuclei and whole cells. Nucleic Acids Res. 16: 4525–4538.
  • Angelov, D., M. Berger, J. Cadet, C. Marion, and A. Spassky 1994. High-intensity ultraviolet laser probing of nucleic acids. Trends Photochem. Photobiol. 3: 643–663.
  • Arents, G., R. W. Burlingame, B.-C. Wang, W. E. Love, and E. N. Moudrianakis 1991. The nucleosomal core histone octamer at 3.1A resolution: a tripartite protein assembly and a left-handed superhelix. Proc. Natl. Acad. Sci. USA 88: 10148–10152.
  • Arents, G., and E. N. Moudrianakis 1994. DNA protein interactions in chromatin and the structure of the histone octamer Structural biology: the state of the art. Proceedings of the Eighth Conversation. In: Sarma, H., and M. Sarma93–108State University of New York, Albany.
  • Ausio, J., and K. van Holde 1986. Histone hyperacetylation: its effect on nucleosome conformation and stability. Biochemistry 22: 1421–1428.
  • Ausio, J., F. Dong, and K. E. van Holde 1989. Use of selectively trypsinized nucleosome core particles to analyze the role of the histone tails in the stabilization of the nucleosome. J. Mol. Biol. 206: 451–463.
  • Banéres, J.-L., A. Martin, and J. Parello 1997. The N tails of histones H3 and H4 adopt a highly structured conformation in the nucleosome. J. Mol. Biol. 273: 503–508.
  • Bannister, A. J., and T. Kouzarides 1996. The CBP coactivator is a histone acetyltransferase. Nature 384: 641–643.
  • Beato, M., and K. Eisfeld 1997. Transcription factor access to chromatin. Nucleic Acids Res. 25: 3559–3563.
  • Braunstein, M., A. B. Rose, S. G. Holmes, C. D. Allis, and J. R. Broach 1993. Transcriptional silencing in yeasts is associated with reduced nucleosome acetylation. Genes Dev. 7: 592–604.
  • Brownell, J., and C. D. Allis 1995. An activity gel assay detects a single catalytically active histone acetyltransferase subunit in Tetrahymena macronuclei. Proc. Natl. Acad. Sci. USA 92: 6364–6368.
  • Brownell, J., J. Zhou, T. Ranally, R. Kobayashi, D. Edmonson, S. Roth, and C. D. Allis 1996. Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell 84: 843–851.
  • Cary, P. D., T. Moss, and E. M. Bradbury 1978. High resolution proton-magnetic-resonance studies of chromatin core particles. Eur. J. Biochem. 89: 475–482.
  • Chen, H., B. Li, and J. L. Workman 1994. A histone DNA-binding protein, nucleoplasmin, stimulates transcription factor binding to nucleosomes and factor-induced nucleosome disassembly. EMBO J. 13: 380–390.
  • Dimitrov, S., and A. P. Wolffe 1997. Fine resolution of histones by two-dimensional polyacrylamide gel electrophoresis: developmental implications. Methods Companion Methods Enzymol. 12: 57–61.
  • Dimitrov, S. I., V. Russanova, and I. Pashev 1987. The globular domain of histone H5 is internally located in the 30 nm chromatin fiber: an immunochemical study. EMBO J. 6: 2387–2392.
  • Dimitrov, S. I., V. Stefanovsky, L. Karagyozov, D. A. Angelov, and I. G. Pashev 1990. The enhancers and promoters of the Xenopus laevis ribosomal spacer are associated with histones upon active transcription of the ribosomal genes. Nucleic Acids Res. 18: 6393–6397.
  • Dimitrov, S. I., G. Almouzni, M. Dasso, and A. Wolffe 1993. Chromatin transitions during early Xenopus embryogenesis: changes in histone H4 acetylation and in linker histone type. Dev. Biol. 160: 214–227.
  • Dimitrov, S. I., and A. P. Wolffe 1995. Chromatin and nuclear assembly: experimental approaches toward the reconstitution of transcriptionally active and silent states. Biochim. Biophys. Acta 1260: 1–13.
  • Ebralidze, K. K., T. R. Hebbes, A. L. Clayton, A. W. Thorne, and C. Crane-Robinson 1993. Nucleosomal structure at hyperacetylated loci probed in nuclei by DNA-histone crosslinking. Nucleic Acids Res. 21: 4734–4738.
  • Edmonson, D. G., M. M. Smith, and S. Y. Roth 1996. Repression domain of the yeast global repressor Tup1 interacts directly with histones H3 and H4. Genes Dev. 10: 1247–1259.
  • Ericsson, C., U. Grossbach, B. Bjorkroth, and B. Daneholt 1990. Presence of histone H1 on an active Balbiani ring gene. Cell 60: 73–83.
  • Garcia-Ramirez, M., C. Rocchini, and J. Ausio 1995. Modulation of chromatin folding by histone acetylation. J. Biol. Chem. 270: 17923–17928.
  • Grunstein, M. 1997. Histone acetylation in chromatin structure and transcription. Nature 389: 349–352.
  • Gu, W., and R. G. Roeder 1997. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90: 595–606.
  • Hebbes, T. R., A. W. Thorne, and C. Crane-Robinson 1989. A direct link between core histone acetylation and transcriptionally active chromatin. EMBO J. 7: 1395–1402.
  • Hebbes, T. R., A. L. Clayton, A. W. Thorne, and C. Crane-Robinson 1994. Core histone acetylation co-maps with generalized DNase I sensitivity in the chicken β-blobin chromosomal domain. EMBO J. 13: 1823–1830.
  • Hecht, A., T. Laroche, S. Strahl-Bolsinger, S. M. Gasser, and M. Grunstein 1995. Histone H3 and H4 termini interact with SIR3 and SIR4 proteins: a molecular model for the formation of heterochromatin in yeast. Cell 80: 583–592.
  • Heinzel, T., R. M. Lavinsky, T.-M. Mullen, M. Söderström, C. D. Laherty, J. Torchia, W.-M. Yang, G. Brard, S. D. Ngo, J. R. Davie, E. Seto, R. N. Eisenman, D. W. Rose, C. K. Glass, and M. G. Rosenfeld 1997. A complex containing N-CoR, mSin3 and histone deacetylase mediates transcriptional repression. Nature 387: 43–48.
  • Hockensmith, J. W., W. L. Kubasek, W. R. Worachek, E. M. Evertsz, and P. H. von Hippel 1991. DNA-protein interactions. Methods Enzymol. 208: 211–236.
  • Howe, L., and J. Ausio 1998. Nucleosome translational position and not histone acetylation determines TFIIA binding to nucleosomal Xenopus laevis 5S rRNA genes. Mol. Cell. Biol. 18: 1156–1162.
  • Ip, Y. T., V. Jackson, J. Meyer, and R. Chalkley 1988. The separation of transcriptionally engaged genes. J. Biol. Chem. 263: 14044–14052.
  • Ito, T., M. Bulger, M. J. Pazin, R. Kobayashi, and J. T. Kadonaga 1997. ACF, an ISWI-containing and ATP-utilizing chromatin assembly and remodeling factor. Cell 90: 145–155.
  • Jeppesen, P., A. Mitchell, B. M. Turner, and P. Perry 1992. Antibodies to defined histone epitopes reveal variations in chromatin conformation and underacetylation of centric heterochromatin in human metaphase chromosomes. Chromosoma 101: 322–332.
  • Jeppesen, P., and B. M. Turner 1993. The inactive X chromosome in female mammals is distinguished by a lack of histone H4 acetylation, a cytogenetic marker for gene expression. Cell 74: 281–289.
  • Kadosh, D., and K. Struhl 1997. Repression by Ume6 involves recruitment of a complex containing Sin3 corepressor and Rpd3 histone deacetylase to target promoters. Cell 89: 365–371.
  • Khochbin, S., and A. P. Wolffe 1997. The origin and utility of histone deacetylases. FEBS Lett. 419: 157–160.
  • Kuo, M.-H., J. A. Brownell, R. E. Sobel, T. Ranalli, R. G. Cook, D. G. Edmonson, S. Y. Roth, and C. D. Allis 1996. Transcription-linked acetylation by Gcn5p of histones H3 and H4 at specific lysines. Nature 383: 269–272.
  • Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.
  • Lee, D. Y., J. J. Hayes, D. Pruss, and A. P. Wolffe 1993. A positive role for histone acetylation in transcription factor access to nucleosomal DNA. Cell 72: 73–84.
  • Lin, Y. S., M. Carey, M. Ptachne, and M. R. Green 1988. How different transcription activators can cooperate. Cell 54: 659–664.
  • Luger, K., A. W. Mäder, R. K. Richmond, D. F. Sargent, and T. J. Richmond 1997. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389: 251–260.
  • Mirzabekov, A. D., D. V. Pruss, and K. K. Ebralidze 1989. Chromatin superstructure-dependent crosslinking with DNA of the histone H5 residues Thr1, His25 and His62. J. Mol. Biol. 211: 479–491.
  • Mizzen, C. A., X. J. Yang, T. Kokubo, J. E. Brownell, A. J. Bannister, T. Owen-Hughes, J. Workman, L. Wang, S. L. Berger, T. Kouzarides, I. Nakatani, and C. D. Allis 1996. The TAFII250 subunit of TFIID has histone acetyltransferase activity. Cell 86: 1261–1270.
  • Moss, T., S. I. Dimitrov, and D. Houde 1997. UV-laser crosslinking of proteins to DNA. Methods Companion Methods Enzymol. 11: 225–234.
  • Mutskov, V. J., V. Russanova, S. I. Dimitrov, and I. Pashev 1996. Histones associated with non-nucleosomal rat-ribosomal genes are acetylated, while those bound to nucleosome organized gene copies are not. J. Biol. Chem. 271: 11852–11857.
  • Nacheva, G. A., D. Y. Guschin, O. V. Preobrazhenskaya, V. L. Karpov, K. K. Ebralidze, and A. D. Mirzabekov 1989. Changes in the pattern of histone binding to DNA upon transcription activation. Cell 58: 27–36.
  • Ogryzko, V. V., R. L. Schiltz, V. Russanova, B. H. Howard, and Y. Nakatani 1996. The transcriptional coactivators p300 and CBP are histone acetytransferases. Cell 87: 953–959.
  • Owen-Hughes, T., and J. L. Workman 1994. Experimental analysis of chromatin function in transcriptional control. Crit. Rev. Euk. Gene Expression 4: 403–441.
  • Pashev, I. G., S. I. Dimitrov, and D. Angelov 1991. Laser-induced protein-DNA crosslinking. Trends Biochem. Sci. 16: 323–326.
  • Pazin, M. J., and J. T. Kadonaga 1997. What’s up and down with histone deacetylation and transcription? Cell 89: 325–328.
  • Peterson, C. L., and J. W. Tamkun 1995. The SWI-SNF complex: a chromatin remodeling machine? Trends Biochem. Sci. 20: 143–146.
  • Roth, S. Y., M. Shimuzu, L. Johnson, M. Grunstein, and T. Simpson 1992. Stable nucleosome positioning and complete repression by the yeast a2 repressor are disrupted by amino-terminal mutations in histone H4. Genes Dev. 6: 411–425.
  • Roth, S. Y., and C. D. Allis 1996. Histone acetylation and chromatin assembly: a single escort, multiple dances? Cell 87: 5–8.
  • Solomon, M. J., P. L. Larsen, and A. Varshavsky 1988. Mapping protein-DNA interactions in vivo with formaldehyde: evidence that histone H4 is retained on a highly transcribed gene. Cell 53: 937–947.
  • Stefanovsky, V., S. I. Dimitrov, V. R. Russanova, D. Angelov, and I. G. Pashev 1989. Laser-induced crosslinking of histones to DNA in chromatin and core particles: implications in studying histone-DNA interactions. Nucleic Acids Res. 23: 10069–10081.
  • Tjian, R., and T. Maniatis 1994. Transcriptional activation: a complex puzzle with few easy pieces. Cell 77: 5–8.
  • Tsukiyama, T., P. B. Becker, and C. Wu 1994. ATP-dependent nucleosome disruption at a heat-shock promoter mediated by the binding of GAGA transcription factor. Nature 367: 525–532.
  • Tsukiyama, T., C. Daniel, G. Tamkun, and C. Wu 1995. ISWI, a member of the SWI2/SNF2 ATPase family, encodes the 140 kDa subunit of the nucleosome remodeling factor. Cell 83: 1021–1026.
  • Turner, B. M., L. Franchi, and H. Wallace 1990. Islands of acetylated H4 in polytene chromosomes and their relationship to chromatin packaging and transcriptional activity. J. Cell Sci. 96: 335–346.
  • Turner, B. M., A. J. Birley, and J. Lavender 1992. Histone H4 isoforms acetylated at specific lysine residues define individual chromosomes and chromatin domains in Drosophila polytene nuclei. Cell 69: 375–384.
  • Turner, B. M., and L. P. O’Neill 1995. Histone acetylation in chromatin and chromosomes. Semin. Cell Biol. 6: 229–236.
  • Usachenko, S. I., S. G. Bavykin, I. M. Gavin, and E. M. Bradbury 1994. Rearrangement of the histone H2A C-terminal domain in the nucleosome. Proc. Natl. Acad. Sci. USA 91: 6845–6849.
  • van Holde, K. 1988. Chromatin. Springer-Verlag KG, Berlin, Germany.
  • Varga-Weisz, P. D., M. Wilm, E. Bonte, K. Dumas, M. Mann, and P. B. Becker 1997. Chromatin-remodelling factor CHRAC contains the ATPases ISWI and topoisomerase II. Nature 388: 598–602.
  • Vettese-Dadey, M., P. Walter, H. Chen, L. J. Juan, and J. L. Workman 1994. Role of the histone amino termini in the facilitated binding of a transcription factor, GAL4-AH, to nucleosome cores. Mol. Cell. Biol. 14: 970–981.
  • Vettese-Dadey, M., P. A. Grant, T. R. Hebbes, C. Crane-Robinson, C. D. Allis, and J. L. Workman 1996. Acetylation of histone H4 plays a primary role in enhancing transcription factor binding to nucleosomal DNA in vitro. EMBO J. 15: 2508–2518.
  • Volgelstein, B., and D. Gillespie 1979. Preparative and analytical purification of DNA from agarose. Proc. Natl. Acad. Sci. USA 76: 615–619.
  • Wade, P. A., D. Pruss, and A. P. Wolffe 1997. Histone acetylation: chromatin in action. Trends Biochem. Sci. 22: 128–132.
  • Walker, I. O. 1984. Differential dissociation of histone tails from core chromatin. Biochemistry 23: 5622–5628.
  • Walter, P. P., T. A. Owen-Hughes, J. Côté, and J. L. Workman 1995. Stimulation of transcription factor binding and histone displacement by nucleosome assembly protein 1 and nucleoplasmin requires disruption of the histone octamer. Mol. Cell. Biol. 15: 6178–6187.
  • Wolffe, A. P., and D. Pruss 1996. Targeted chromatin disruption: transcription regulators that acetylate histones. Cell 84: 817–819.
  • Workman, J. L., and R. E. Kingston 1992. Nucleosome core displacement in vitro via a metastable transcription factor-nucleosome complex. Science 258: 1780–1784.
  • Yang, H. J., V. Ogryzko, J. Nishikawa, B. Howard, and Y. Nakatani 1996. Ap300/CBP-associated factor that competes with the adenoviral oncoprotein E1a. Nature 382: 319–324.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.