23
Views
76
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

Mismatch Repair Proteins Regulate Heteroduplex Formation during Mitotic Recombination in Yeast

&
Pages 6525-6537 | Received 22 Jun 1998, Accepted 19 Aug 1998, Published online: 28 Mar 2023

REFERENCES

  • Abdulkarim, F., and D. Hughes 1996. Homologous recombination between the tuf genes of Salmonella typhimurium. J. Mol. Biol. 260: 506–522.
  • Ahn, B.-Y., and D. M. Livingston 1986. Mitotic gene conversion lengths, coconversion patterns, and the incidence of reciprocal recombination in a Saccharomyces cerevisiae plasmid system. Mol. Cell. Biol. 6: 3685–3693.
  • Alani, E., R. A. G. Reenan, and R. D. Kolodner 1994. Interaction between mismatch repair and genetic recombination in Saccharomyces cerevisiae. Genetics 137: 19–39.
  • Bailis, A. M., and R. Rothstein 1990. A defect in mismatch repair in Saccharomyces cerevisiae stimulates ectopic recombination between homeologous genes by an excision repair-dependent process. Genetics 126: 535–547.
  • Bayliss, A., M. Hendrix, J. McDougal, S. Jinks-Robertson, and G. Crouse. Unpublished data.
  • Borts, R. H., and J. E. Haber 1987. Meiotic recombination in yeast: alteration by multiple heterozygosities. Science 237: 1459–1465.
  • Borts, R. H., W.-Y. Leung, W. Kramer, B. Kramer, M. Williamson, S. Fogel, and J. E. Haber 1990. Mismatch repair-induced meiotic recombination requires PMS1 gene product. Genetics 124: 573–584.
  • Chambers, S. R., N. Hunter, E. J. Louis, and R. H. Borts 1996. The mismatch repair system reduces meiotic homeologous recombination and stimulates recombination-dependent chromosome loss. Mol. Cell. Biol. 16: 6110–6120.
  • Chernoff, Y. O., O. V. Kidgotko, O. Demberelijn, I. L. Luchnikova, S. P. Soldatov, V. M. Glazer, and D. A. Gordenin 1984. Mitotic intragenic recombination in the yeast Saccharomyces: marker-effects on conversion and reciprocity of recombination. Curr. Genet. 9: 31–374.
  • Ciotta, C., S. Ceccotti, G. Aquilina, O. Humbert, F. Palombo, J. Jiricny, and M. Bignami 1998. Increased somatic recombination in methylation-tolerant human cells with defective DNA mismatch repair. J. Mol. Biol. 276: 705–719.
  • Claverys, J.-P., and S. A. Lacks 1986. Heteroduplex deoxyribonucleic acid base mismatch repair in bacteria. Microbiol. Rev. 50: 133–165.
  • Crouse, G. F. Mismatch repair systems in Saccharomyces cerevisiae DNA damage and repair In: Nickoloff, J. A., and M. F. Hoekstra 1998. 1. DNA repair in prokaryotes and lower eukaryotes, 411–448Humana Press, Totowa, N.J.
  • Datta, A., A. Adjiri, L. New, G. F. Crouse, and S. Jinks-Robertson 1996. Mitotic crossovers between diverged sequences are regulated by mismatch repair proteins in Saccharomyces cerevisiae. Mol. Cell. Biol. 16: 1085–1093.
  • Datta, A., M. Hendrix, M. Lipsitch, and S. Jinks-Robertson 1997. Dual roles for DNA sequence identity and the mismatch repair system in the regulation of mitotic crossing-over in yeast. Proc. Natl. Acad. Sci. USA 94: 9757–9762.
  • de Wind, N., M. Dekker, A. Berns, M. Radman, and H. te Riele 1995. Inactivation of the mouse Msh2 gene results in mismatch repair deficiency, methylation tolerance, hyperrecombination, and predisposition to cancer. Cell 82: 321–330.
  • Elliott, B., C. Richardson, J. Winderbaum, J. A. Nickoloff, and M. Jasin 1998. Gene conversion tracts from double-strand break repair in mammalian cells. Mol. Cell. Biol. 18: 93–101.
  • Feinstein, S. I., and K. B. Low 1986. Hyper-recombining recipient strains in bacterial conjugation. Genetics 113: 13–33.
  • Gangloff, S., H. Zou, and R. Rothstein 1996. Gene conversion plays the major role in controlling the stability of large tandem repeats in yeast. EMBO J. 15: 1715–1725.
  • Geitz, D., A. St. Jean, R. A. Woods, and R. H. Schiestl 1992. Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res. 20: 1425.
  • Habraken, Y., P. Sung, L. Prakash, and S. Prakash 1997. Enhancement of MSH2-MSH3-mediated mismatch recognition by the yeast MLH1-PMS1 complex. Curr. Biol. 7: 790–793.
  • Harris, S., K. S. Rudnicki, and J. E. Haber 1993. Gene conversions and crossing over during homologous and homeologous ectopic recombination in Saccharomyces cerevisiae. Genetics 135: 5–16.
  • Hoffman, C. S., and F. Winston 1987. A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene 57: 267–272.
  • Humbert, O., M. Prudhomme, R. Hakenbeck, C. G. Dowson, and J.-P. Claverys 1995. Homeologous recombination and mismatch repair during transformation in Streptococcus pneumoniae: saturation of the Hex mismatch repair system. Proc. Natl. Acad. Sci. USA 92: 9052–9056.
  • Hunter, N., and R. H. Borts 1997. Mlh1 is unique among mismatch repair proteins in its ability to promote crossing-over during meiosis. Genes Dev. 11: 1573–1582.
  • Hunter, N., S. R. Chambers, E. J. Louis, and R. H. Borts 1996. The mismatch repair system contributes to meiotic sterility in an interspecific yeast hybrid. EMBO J. 15: 1726–1733.
  • Jinks-Robertson, S., and T. D. Petes 1986. Chromosomal translocations generated by high-frequency meiotic recombination between repeated yeast genes. Genetics 114: 731–752.
  • Judd, S. R., and T. D. Petes 1988. Physical lengths of meiotic and mitotic gene conversion tracts in Saccharomyces cerevisiae. Genetics 118: 401–410.
  • Lichten, M., and J. E. Haber 1989. Position effects in ectopic and allelic mitotic recombination in Saccharomyces cerevisiae. Genetics 123: 261–268.
  • Majewski, J., and F. M. Cohan 1998. The effect of mismatch repair and heteroduplex formation on sexual isolation in Bacillus. Genetics 148: 13–18.
  • Matic, I., C. Rayssiguier, and M. Radman 1995. Interspecies gene exchange in bacteria: the role of SOS and mismatch repair systems in evolution of species. Cell 80: 507–515.
  • McDougal, J., and S. Jinks-Robertson. Unpublished data.
  • Mezard, C., D. Pompon, and A. Nicolas 1992. Recombination between similar but not identical DNA sequences during yeast transformation occurs within short stretches of identity. Cell 70: 659–670.
  • Modrich, P., and R. Lahue 1996. Mismatch repair in replication fidelity, genetic recombination and cancer biology. Annu. Rev. Biochem. 65: 101–133.
  • Negritto, M. T., X. Wu, T. Kuo, S. Chu, and A. M. Bailis 1997. Influence of DNA sequence identity on efficiency of targeted gene replacement. Mol. Cell. Biol. 17: 278–286.
  • Nilsson-Tillgren, T., C. Gjermansen, S. Holmberg, M. C. L. Petersen, and M. C. Kielland-Brandt 1986. Analysis of chromosome V and the ILV1 gene from Saccharomyces calsbergensis. Carlsberg Res. Commun. 51: 309–326.
  • Petes, T. D., R. E. Malone, and L. S. Symington 1991. Recombination in yeast The molecular biology of the yeast Saccharomyces: genome dynamics, protein synthesis and energetics. In: Broach, J. R., J. R. Pringle, and E. W. Jones407–521Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Porter, G., J. Westmoreland, S. Priebe, and M. A. Resnick 1996. Homologous and homeologous intermolecular gene conversion are not differentially affected by mutations in the DNA damage or mismatch repair genes RAD1, RAD50, RAD51, RAD52, RAD54, PMS1 and MSH2. Genetics 143: 755–767.
  • Priebe, S. D., J. Westmoreland, T. Nilsson-Tillgren, and M. A. Resnick 1994. Induction of recombination between homologous and diverged DNAs by double-strand gaps and breaks and role of mismatch repair. Mol. Cell. Biol. 14: 4802–4814.
  • Radman, M. 1988. Mismatch repair and genetic recombination Genetic recombination. In: Kucherlapati, R., and G. R. Smith169–192American Society for Microbiology, Washington, D.C.
  • Radman, M. 1991. Avoidance of inter-repeat recombination by sequence divergence and a mechanism of neutral evolution. Biochimie 73: 357–361.
  • Rayssiguier, C., D. S. Thaler, and M. Radman 1989. The barrier to recombination between Escherichia coli and Salmonella typhimurium is disrupted in mismatch-repair mutants. Nature 342: 396–401.
  • Resnick, M. A., Z. Zgaga, P. Hieter, J. Westmoreland, S. Fogel, and T. Nilsson-Tillgren 1992. Recombinational repair of diverged DNAs: a study of homeologous chromosomes and mammalian YACs in yeast. Mol. Gen. Genet. 234: 65–73.
  • Ronne, H., and R. Rothstein 1988. Mitotic sectored colonies: evidence of heteroduplex DNA formation during direct repeat recombination. Proc. Natl. Acad. Sci. USA 85: 2695–2700.
  • Rothstein, R., C. Helms, and N. Rosenberg 1987. Concerted deletions and inversions are caused by mitotic recombination between delta sequences in Saccharomyces cerevisiae. Mol. Cell. Biol. 7: 1198–1207.
  • Selva, E. M., A. B. Maderazo, and R. S. Lahue 1997. Differential effects of the mismatch repair genes MSH2 and MSH3 on homeologous recombination in Saccharomyces cerevisiae. Mol. Gen. Genet. 257: 71–82.
  • Selva, E. M., L. New, G. F. Crouse, and R. S. Lahue 1995. Mismatch correction acts as a barrier to homeologous recombination in Saccharomyces cerevisiae. Genetics 139: 1175–1188.
  • Shen, P., and H. V. Huang 1986. Homologous recombination in Escherichia coli: dependence on substrate length and homology. Genetics 112: 441–457.
  • Shen, P., and H. V. Huang 1989. Effect of base pair mismatches on recombination via the RecBCD pathway. Mol. Gen. Genet. 218: 358–360.
  • Sugawara, N., F. Paques, M. Colaiacovo, and J. E. Haber 1997. Role of Saccharomyces cerevisiae Msh2 and Msh3 repair proteins in double-strand break-induced recombination. Proc. Natl. Acad. Sci. USA 94: 9214–9219.
  • Supply, P., A. de Kerchove D’Exaerde, T. Roganti, A. Goffeau, and F. Foury 1995. In-frame recombination between the yeast H+-ATPase isogenes PMA1 and PMA2: insights into the mechanism of recombination initiated by a double-strand break. Mol. Cell. Biol. 15: 5389–5395.
  • Sweetser, D. B., H. Hough, J. Wheldon, M. Arbuckle, and J. A. Nickoloff 1994. Fine-resolution mapping of spontaneous and double-strand break-induced gene conversion tracts in Saccharomyces cerevisiae reveals reversible mitotic conversion polarity. Mol. Cell. Biol. 14: 3863–3875.
  • Vincent, A., and T. D. Petes 1989. Mitotic and meiotic gene conversion of Ty elements and other insertions in Saccharomyces cerevisiae. Genetics 122: 759–772.
  • Vulic, M., F. Dionisio, F. Taddei, and M. Radman 1997. Molecular keys to speciation: DNA polymorphism and the control of genetic exchange in enterobacteria. Proc. Natl. Acad. Sci. USA 94: 9763–9767.
  • Waldman, A. S., and R. M. Liskay 1987. Differential effects of base-pair mismatch on intrachromosomal versus extrachromosomal recombination in mouse cells. Proc. Natl. Acad. Sci. USA 84: 5340–5344.
  • Westmoreland, J., G. Porter, M. Radman, and M. A. Resnick 1997. Highly mismatched molecules resembling recombination intermediates efficiently transform mismatch repair proficient Escherichia coli. Genetics 145: 29–38.
  • Willis, K. K., and H. L. Klein 1987. Intrachromosomal recombination in Saccharomyces cerevisiae: reciprocal exchange in an inverted repeat and associated gene conversion. Genetics 117: 633–643.
  • Worth, L.Jr., S. Clark, M. Radman, and P. Modrich 1994. Mismatch repair proteins MutS and MutL inhibit RecA-catalyzed strand transfer between diverged DNAs. Proc. Natl. Acad. Sci. USA 91: 3238–3241.
  • Yang, D., and A. S. Waldman 1997. Fine-resolution analysis of products of intrachromosomal homeologous recombination in mammalian cells. Mol. Cell. Biol. 17: 3614–3628.
  • Zahrt, T. C., and S. Maloy 1997. Barriers to recombination between closely related bacteria: MutS and RecBCD inhibit recombination between Salmonella typhimurium and Salmonella typhi. Proc. Natl. Acad. Sci. USA 94: 9786–9791.
  • Zahrt, T. C., G. C. Mora, and S. Maloy 1994. Inactivation of mismatch repair overcomes the barrier to transduction between Salmonella typhimurium and Salmonella typhi. J. Bacteriol. 176: 1527–1529.
  • Zawadzki, P., M. S. Roberts, and F. M. Cohan 1995. The log-linear relationship between sexual isolation and sequence divergence in Bacillus transformation is robust. Genetics 140: 917–932.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.