157
Views
941
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

Identification and Characterization of a Family of Mammalian Methyl-CpG Binding Proteins

&
Pages 6538-6547 | Received 24 Jun 1998, Accepted 20 Aug 1998, Published online: 28 Mar 2023

REFERENCES

  • Antequera, F., and A. Bird 1994. Number of CpG islands and genes in human and mouse. Proc. Natl. Acad. Sci. USA 90: 11995–11999.
  • Antequera, F., J. Boyes, and A. Bird 1990. High levels of de novo methylation and altered chromatin structure at CpG islands in cell lines. Cell 62: 503–514.
  • Bartolomei, M. S., and S. M. Tilghman 1997. Genomic imprinting in mammals. Annu. Rev. Genet. 31: 493–525.
  • Bassett, D. E. J., M. S. Boguski, F. Spencer, R. Reeves, M. Goebl, and P. Hieter 1995. Comparative genomics, genome cross-referencing and XREFdb. Trends Genet. 11: 372–373.
  • Beard, C., E. Li, and R. Jaenisch 1995. Loss of methylation activates Xist in somatic but not embryonic cells. Genes Dev. 9: 2325–2334.
  • Bird, A. P. 1986. CpG-rich islands and the function of DNA methylation. Nature 321: 209–213.
  • Bird, A. P. 1995. Gene number, noise reduction and biological complexity. Trends Genet. 11: 94–100.
  • Bird, A. P. 1996. The relationship of DNA methylation to cancer. Cancer Surv. 28: 87–101.
  • Boyes, J., and A. Bird 1991. DNA methylation inhibits transcription indirectly via a methyl-CpG binding protein. Cell 64: 1123–1134.
  • Boyes, J., and A. Bird 1992. Repression of genes by DNA methylation depends upon CpG density and promoter strength: evidence for involvement of a methyl-CpG binding protein. EMBO J. 11: 327–333.
  • Buschhausen, G., B. Wittig, M. Graessmann, and A. Graessmann 1987. Chromatin structure is required to block transcription of the methylated herpes simplex virus thymidine kinase gene. Proc. Natl. Acad. Sci. USA 84: 1177–1181.
  • Cedar, H. 1988. DNA methylation and gene activity. Cell 53: 3–4.
  • Chomczynski, P., and N. Sacchi 1987. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162: 156–159.
  • Comb, M., and H. M. Goodman 1990. CpG methylation inhibits proenkephalin gene expression and binding of the transcription factor AP-2. Nucleic Acids Res. 18: 3975–3982.
  • Cross, S., R. Meehan, X. Nan, and A. Bird 1997. A component of the transcriptional repressor MeCP1 shares a motif with DNA methyltransferase and HRX proteins. Nat. Genet. 13: 256–259.
  • de Bustros, A., B. D. Nelkin, A. Silverman, G. Ehrlich, B. Poiesz, and S. B. Baylin 1988. The short arm of chromosome 11 is a “hot spot” for hypermethylation in human neoplasia. Proc. Natl. Acad. Sci. USA 85: 5693–5697.
  • Harrison, S. M., S. L. Dunwoodie, R. M. Arkell, H. Lehrach, and R. S. P. Beddington 1995. Isolation of novel tissue-specific genes from cDNA libraries representing the individual tissue constituents of the gastrulating mouse embryo. Development 121: 2479–2489.
  • Hendrich, B. Unpublished results.
  • Hendrich, B., P. Tate, and A. Bird. Unpublished results.
  • Herman, J. G., A. Merlo, L. Mao, R. G. Lapidus, J. P. Issa, N. E. Davidson, D. Sidransky, and S. Baylin 1995. Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma. Proc. Natl. Acad. Sci. USA 91: 9700–9704.
  • Hu, C. H., B. McStay, S.-W. Jeong, and R. H. Reeder 1994. xUBF, an RNA polymerase I transcription factor, bind crossover DNA with low sequence specificity. Mol. Cell. Biol. 14: 2871–2882.
  • Huntriss, J., R. Lorenzi, A. Purewal, and M. Monk 1997. A methylation-dependent DNA-binding activity recognising the methylated promoter region of the mouse Xist gene. Biochem. Biophys. Res. Commun. 235: 730–738.
  • Iguchi-Ariga, S. M. M., and W. Schaffner 1989. CpG methylation of the cAMP responsive enhancer/promoter sequence TGACGTCA abolishes specific factor binding as well as transcriptional activation. Genes Dev. 3: 612–619.
  • Jones, P. L., G. J. C. Veenstra, P. A. Wade, D. Vermaak, S. U. Kass, N. Landsberger, J. Strouboulis, and A. P. Wolffe 1998. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat. Genet. 19: 187–191.
  • Kass, S. U., J. P. Goddard, and R. L. P. Adams 1993. Inactive chromatin spreads from a focus of methylation. Mol. Cell. Biol. 13: 7372–7379.
  • Kozak, M. 1986. Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44: 283–292.
  • Lei, H., S. P. Oh, M. Okano, R. Jüttermann, K. A. Goss, R. Jaenisch, and E. Li 1996. De novo DNA cytosine methyltransferase activities in mouse embryonic stem cells. Development 122: 3195–3205.
  • Lennon, G., C. Auffray, M. Polymeropoulos, and M. B. Soares 1996. The I.M.A.G.E. consortium: an integrated molecular analysis of genomes and their expression. Genomics 33: 151–152.
  • Lewis, J. D., R. R. Meehan, W. J. Henzel, I. Maurer-Fogy, P. Jeppesen, F. Klein, and A. Bird 1992. Purification, sequence, and cellular localization of a novel chromosomal protein that binds to methylated DNA. Cell 69: 905–914.
  • Li, E., C. Beard, and R. Jaenisch 1993. Role for DNA methylation in genomic imprinting. Nature 366: 362–365.
  • Li, E., T. H. Bestor, and R. Jaenisch 1992. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69: 915–926.
  • Meehan, R. R., J. D. Lewis, S. McKay, E. L. Kleiner, and A. P. Bird 1989. Identification of a mammalian protein that binds specifically to DNA containing methylated CpGs. Cell 58: 499–507.
  • Miller, O. L., W. Schnedl, J. Allen, and B. F. Erlanger 1974. Immunofluorescent localization of 5MC. Nature 251: 636–637.
  • Nan, X., F. Campoy, and A. Bird 1997. MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin. Cell 88: 471–481.
  • Nan, X., R. R. Meehan, and A. Bird 1993. Dissection of the methyl-CpG binding domain from the chromosomal protein MeCP2. Nucleic Acids Res. 21: 4886–4892.
  • Nan, X., H.-H. Ng, C. A. Johnson, C. D. Laherty, B. M. Turner, R. N. Eisenmann, and A. Bird 1998. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393: 386–389.
  • Nan, X., P. Tate, E. Li, and A. Bird 1996. DNA methylation specifies chromosomal localization of MeCP2. Mol. Cell. Biol. 16: 414–421.
  • Nan, X., S. Tweedie, and A. Bird. Unpublished results.
  • Neumann, B., and D. P. Barlow 1996. Multiple roles for DNA methylation in gametic imprinting. Curr. Opin. Genet. Dev. 6: 159–163.
  • Ogawa, H., S. Inouye, F. I. Tsuji, K. Yasuda, and K. Umesono 1995. Localization, trafficking, and temperature-dependence of the Aequorea green fluorescent protein in cultured vertebrate cells. Proc. Natl. Acad. Sci. USA 92: 11899–11903.
  • Prokhortchouk, A. V., E. B. Prokhortchouk, and G. P. Georgiev. Unpublished data.
  • Razin, A., and H. Cedar 1994. DNA methylation and genomic imprinting. Cell 77: 473–476.
  • Riggs, A. D., and G. P. Pfeifer 1992. X-chromosome inactivation and cell memory. Trends Genet. 8: 169–174.
  • Sakai, T., J. Toguchida, N. Ohtani, D. W. Yandell, J. M. Rapaport, and T. P. Dryja 1991. Allele-specific hypermethylation of the retinoblastoma tumor-suppressor gene. Am. J. Hum. Genet. 48: 880–888.
  • Smith, A. G., J. K. Heath, D. D. Donaldson, G. G. Wong, J. Moreau, M. Stahl, and D. Rogers 1988. Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature 336: 688–690.
  • Tate, P., W. Skarnes, and A. Bird 1996. The methyl-CpG binding protein MeCP2 is essential for embryonic development in the mouse. Nat. Genet. 12: 205–208.
  • Tweedie, S., J. Charlton, V. Clark, and A. Bird 1997. Methylation of genomes and genes at the invertebrate-vertebrate boundary. Mol. Cell. Biol. 17: 1469–1475.
  • Umesono, K., K. K. Murakami, C. C. Thompson, and R. M. Evans 1991. Direct repeats as selective response elements of the thyroid hormone, retinoic acid, and vitamin D3 receptors. Cell 65: 1255–1266.
  • Weitzel, J. M., H. Buhrmester, and W. H. Strätling 1997. Chicken MAR-binding protein ARBP is homologous to rat methyl-CpG-binding protein MeCP2. Mol. Cell. Biol. 17: 5656–5665.
  • Yuan, L., J.-G. Liu, and C. Höög 1995. Rapid cDNA sequencing in combination with RNA expression studies in mice identifies a large number of male germ cell-specific sequence tags. Biol. Reprod. 52: 131–138.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.