7
Views
102
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Physical and Functional Interactions between Type I Transforming Growth Factor β Receptors and Bα, a WD-40 Repeat Subunit of Phosphatase 2A

, , , &
Pages 6595-6604 | Received 29 Jan 1998, Accepted 20 Aug 1998, Published online: 28 Mar 2023

REFERENCES

  • Alessi, D. R., N. Gomez, G. Moorhead, T. Lewis, S. M. Keyse, and P. Cohen 1995. Inactivation of p42 MAP kinase by protein phosphatase 2A and a protein tyrosine phosphatase, but not CL100, in various cell lines. Curr. Biol. 5: 283–295.
  • Andersson, S., D. L. Davis, H. Dahlback, H. Jornvall, and D. W. Russell 1989. Cloning, structure, and expression of the mitrochondrial cytochrome P-450 sterol 26-hydroxylase, a bile acid biosynthetic enzyme. J. Biol. Chem. 264: 8222–8229.
  • Bassing, C. H., J. M. Yingling, D. J. Howe, T. Wang, W. W. He, M. L. Gustafson, P. Shah, P. K. Donahoe, and X.-F. Wang 1993. A transforming growth factor β type I receptor that signals to activate gene expression. Science 263: 87–89.
  • Brand, T., and M. D. Schneidert 1995. Inactive type II and type I receptors for TGF β are dominant inhibitors of TGF beta-dependent transcription. J. Biol. Chem. 270: 8274–8284.
  • Cairns, J., S. Qin, R. Philp, Y. H. Tan, and G. R. Guy 1994. Dephosphorylation of the small heat shock protein Hsp27 in vivo by protein phosphatase 2A. J. Biol. Chem. 269: 9176–9183.
  • Chen, J., S. Parsons, and D. L. Brautigan 1994. Tyrosine phosphorylation of protein phosphatase 2A in response to growth stimulation and v-src transformation of fibroblasts. J. Biol. Chem. 269: 7957–7962.
  • Chen, R.-H., and R. Derynck 1994. Homomeric interactions between the type II TGF-β receptors. J. Biol. Chem. 269: 22868–22874.
  • Chen, R.-H., P. J. Miettinen, E. M. Maruoka, L. Choy, and R. Derynck 1995. A WD-domain protein that is associated with and phosphorylated by the type II TGF-β receptor. Nature 377: 548–552.
  • Clarke, P. R., I. Hoffmann, G. Draetta, and E. Karsenti 1993. Dephosphorylation of cdc25-C by a type-2A protein phosphatase: specific regulation during the cell cycle in Xenopus egg extracts. Mol. Biol. Cell 4: 397–411.
  • Cohen, P. 1991. Classification of protein-serine/threonine phosphatases: identification and quantitation in cell extracts. Methods Enzymol. 201: 389–397.
  • Derynck, R., and Y. Zhang 1996. Intracellular signalling: the mad way to do it. Curr. Biol. 6: 1226–1229.
  • Derynck, R., and X.-H. Feng 1997. TGF-β receptor signaling. BBA Rev. Cancer, 1333: F105–F150.
  • Ebner, R., R.-H. Chen, L. Shum, S. Lawler, T. Zioncheck, A. R. Lopez, and R. Derynck 1993. Cloning of a type I TGF-β receptor and its effect on TGF-β binding to the type II receptor. Science 260: 1344–1348.
  • Feng, X.-H., E. H. Filvaroff, and R. Derynck 1995. Transforming growth factor-β (TGF-β)-induced down-regulation of cyclin A expression requires a functional TGF-β receptor complex. J. Biol. Chem. 270: 24237–24245.
  • Franzén, P., P. ten Dijke, H. Ichijo, H. Yamashita, P. Schulz, C.-H. Heldin, and K. Miyazono 1993. Cloning of TGF-β type I receptor that forms a heteromeric complex with the TGF-β type I receptor. Cell 75: 681–692.
  • Geng, Y., and R. A. Weinberg 1993. Transforming growth factor β effects on expression of G1 cyclins and cyclin-dependent protein kinases. Proc. Natl. Acad. Sci. USA 90: 10315–10319.
  • Goyette, M. C., K. Cho, C. L. Fasching, D. B. Levy, K. W. Kinzler, C. Paraskeva, B. Vogelstein, and E. Stanbridge 1992. Progression of colorectal cancer is associated with multiple tumor suppressor gene defects but inhibition of tumorigenicity is accomplished by correction of any single defect via chromosome transfer. Mol. Cell. Biol. 12: 1387–1395.
  • Graycar, J. L., D. A. Miller, B. A. Arrick, R. M. Lyons, H. L. Moses, and R. Derynck 1989. Human transforming growth factor-β3: recombinant expression, purification, and biological activities in comparison with transforming growth factors-β1 and -β2. Mol. Endocrinol. 3: 1977–1986.
  • Guy, G. R., R. Philp, and Y. H. Tan 1995. Activation of protein kinases and inactivation of protein phosphatase 2A in tumor necrosis factor and interleukin-1 signal-transduction pathways. Eur. J. Biochem. 229: 503–511.
  • Hannon, G. J., and D. Beach 1994. p15INK4B is a potential effector of TGF-β-induced cell cycle arrest. Nature 371: 257–260.
  • Healy, A. M., S. Zolnierowicz, A. E. Stapleton, M. Goebl, A. A. DePaoli-Roach, and J. R. Pringle 1991. CDC55, a Saccharomyces cerevisiae gene involved in cellular morphogenesis: identification, characterization, and homology to the B subunit of mammalian type 2A protein phosphatase. Mol. Cell. Biol. 11: 5767–5780.
  • Hedman, K., M. Kurkinen, K. Alitalo, A. Vaheri, S. Johansson, and M. Hook 1979. Isolation of the pericellular matrix of human fibroblast cultures. J. Cell Biol. 81: 83–91.
  • Heldin, C.-H. 1996. Protein tyrosine kinase receptors. Cancer Surv. 27: 7–24.
  • Heldin, C.-H, K. Miyazono, and P. ten Dijke 1997. TGF-β signalling from cell membrane to nucleus through SMAD proteins. Nature 390: 465–471.
  • Kamibayashi, C., R. Estes, R. L. Lickteig, S.-I. Yang, C. Craft, and M. C. Mumby 1994. Comparison of heterotrimeric protein phosphatase 2A containing different B subunits. J. Biol. Chem. 269: 20139–20148.
  • Kato, M., A. Ishizaki, U. Hellman, C. Wernstedt, M. Kyogoku, K. Miyazono, C.-H. Heldin, and K. Funa 1995. A human keratinocyte cell line produces two autocrine growth inhibitors, transforming growth factor-β and insulin-like growth factor binding protein-6, in a calcium- and cell density-dependent manner. J. Biol. Chem. 270: 12373–12379.
  • Keeton, M. R., S. A. Curriden, A.-J. van Zonneveld, and D. J. Loskutoff 1991. Identification of regulatory sequences in the type I plasminogen activator inhibitor gene responsive to transforming growth factor β. J. Biol. Chem. 266: 23048–24052.
  • Lagna, G., A. Hata, A. Hemmati-Brivanlou, and J. Massagué 1996. Partnership between DPC4 and SMAD proteins in TGF-β signalling pathways. Nature 383: 832–836.
  • Laiho, M., F. M. B. Weis, and J. Massague 1990. Concomitant loss of transforming growth factor (TGF)-β receptor types I and II in TGF-β-resistant cell mutants implicates both receptor types in signal transduction. J. Biol. Chem. 265: 18518–18524.
  • Laiho, M., F. M. B. Weis, F. T. Boyd, R. A. Ignotz, and J. Massagué 1991. Responsiveness to transforming growth factor-β (TGF-β) restored by genetic complementation between cells defective in TGF-β receptors I and II. J. Biol. Chem. 266: 9108–9112.
  • Lin, H. Y., X.-F. Wang, E. Ng-Eaton, R. A. Weinberg, and H. F. Lodish 1992. Expression cloning of the TGF-β type II receptor, a functional transmembrane serine/threonine kinase. Cell 68: 775–785.
  • Liu, F., F. Ventura, J. Doody, and J. Massagué 1995. Human type II receptor for bone morphogenetic proteins (BMPs): extension of the two-kinase receptor model to the BMPs. Mol. Cell. Biol. 15: 3479–3486.
  • Massagué, J., A. Hata, and F. Liu 1997. TGF-β signalling through the Smad pathway. Trends Cell Biol. 7: 187–192.
  • Mayer, R. E., P. Hendrix, P. Cron, R. Matthies, S. R. Stone, J. Goris, W. Merlevede, J. Hofsteenge, and B. A. Hemmings 1991. Structure of the 55kDa regulatory subunit of protein phosphatase 2A: evidence for a neuronal-specific isoform. Biochemistry 30: 3589–3597.
  • Mayer-Jaekel, R. E., H. Ohkura, R. Gomes, C. E. Sunkel, S. Baumgartner, B. A. Hemmings, and D. M. Glover 1993. The 55 kd regulatory subunit of drosophila protein phosphatase 2A is required for anaphase. Cell 72: 621–633.
  • Mayer-Jaekel, R. E., H. Ohkura, P. Ferrigno, N. Andjelkovic, K. Shiomi, T. Uemura, D. M. Glover, and B. M. Hemmings 1994. Drosophila mutants in the 55 kDa regulatory subunit of protein phosphatase 2A show strongly reduced ability to dephosphorylate substrates of p34cdc2. J. Cell. Sci. 107: 2609–2616.
  • McCaffrey, T. A., D. J. Falcone, C. F. Brayton, L. A. Agarwal, F. G. Welt, and B. B. Weksler 1989. Transforming growth factor-β activity is potentiated by heparin via dissociation of the transforming growth factor-β/α2-macroglobulin inactive complex. J. Cell Biol. 109: 441–448.
  • McCright, B., and D. M. Virshup 1995. Identification of a new family of protein phosphatase 2A regulatory subunits. J. Biol. Chem. 270: 26123–26128.
  • Miettinen, P. J., R. Ebner, A. R. Lopez, and R. Derynck 1994. TGF-β-induced transdifferentiation of mammary epithelial cells to mesenchymal cells: involvement of type I receptors. J. Cell Biol. 127: 2021–2036.
  • Neer, E. J., C. J. Schmidt, R. Nambudripad, and T. F. Smith 1994. The ancient regulatory-protein family of WD-repeat proteins. Nature 371: 297–300.
  • Reynisdottir, I., K. Polyak, A. Iavarone, and J. Massagué 1995. Kip/Cip and Ink4 Cdk inhibitors cooperate to induce cell cycle arrest in response to TGF-β. Genes Dev. 9: 1831–1845.
  • Smith, D. B., and K. S. Johnson 1988. Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene 67: 31–40.
  • Sontag, E., S. Fedorov, C. Kamibayashi, D. Robbins, M. Cobb, and M. Mumby 1993. The interaction of SV40 small tumor antigen with protein kinase 2A stimulates the MAP kinase pathway and induces cell proliferation. Cell 75: 887–897.
  • Sontag, E., V. Nunbhakdi-Craig, G. S. Bloom, and M. C. Mumby 1995. Novel pool of protein phosphatase 2A is associated with microtubules and is regulated during the cell cycle. J. Cell Biol. 128: 1131–1144.
  • Tanabe, O., T. Nagase, T. Murakami, H. Nozaki, H. Usui, Y. Nishito, H. Hayashi, H. Kagamiyama, and M. Takeda 1996. Molecular cloning of a 74-kDa regulatory subunit (B") of human protein phosphatase 2A. FEBS Lett. 379: 107–111.
  • Tehrani, M. A., M. C. Mumby, and C. Kamibayashi 1996. Identification of a novel protein phosphatase 2A regulatory subunit highly expressed in muscle. J. Biol. Chem. 271: 5164–5170.
  • Tehrani, M., and M. Mumby. Unpublished data.
  • Wrana, J. L., L. Attisano, J. Cárcamo, A. Zentella, J. Doody, M. Laiho, X.-F. Wang, and J. Massagué 1992. TGF-β signals through a heteromeric protein kinase receptor complex. Cell 71: 1003–1014.
  • Wrana, J. L., L. Attisano, R. Wieser, F. Ventura, and J. Massagué 1994. Mechanism of activation of the TGF-β receptor. Nature 370: 341–347.
  • Zhang, Y., X.-H. Feng, R.-Y. Wu, and R. Derynck 1996. Receptor-associated Mad homologues synergize to induce TGF-β response. Nature 382: 168–172.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.