2
Views
32
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Substitution of the Human β-Spectrin Promoter for the Human Aγ-Globin Promoter Prevents Silencing of a Linked Human β-Globin Gene in Transgenic Mice

, , , , , & show all
Pages 6634-6640 | Received 18 May 1998, Accepted 23 Jul 1998, Published online: 28 Mar 2023

REFERENCES

  • Alter, B. P., S. C. Goff, G. D. Efremov, M. E. Graveley, and T. H. J. Huisman 1980. Globin chain electrophoresis: a new approach to the determination of the Gγ/Aγ ratio in fetal haemoglobin and to studies of globin synthesis. Br. J. Haematol. 44: 527–534.
  • Amrolia, P. J., L. Ramamurthy, D. Saluja, N. Tanese, S. M. Jane, and J. M. Cunningham 1997. The activation domain of the enhancer binding protein p45NF-E2 interacts with TAFII130 and mediates long-range activation of the α- and β-globin gene loci in an erythroid cell line. Proc. Natl. Acad. Sci. USA 94: 10051–10056.
  • Anderson, K. P., J. A. Lloyd, E. Ponce, S. C. Crable, J. C. Neumann, and J. B. Lingrel 1993. Regulated expression of the human β-globin gene in transgenic mice requires an upstream globin or nonglobin promoter. Mol. Biol. Cell 4: 1077–1085.
  • Behringer, R. R., T. M. Ryan, R. D. Palmiter, R. L. Brinster, and T. M. Townes 1990. Human γ to β-globin gene switching in transgenic mice. Genes Dev. 4: 380–389.
  • Bungert, J., U. Dave, K.-C. Lim, K. H. Lieuw, J. A. Shavit, Q. Liu, and J. D. Engel 1995. Synergistic regulation of human β-globin switching by locus control region elements HS3 and HS4. Genes Dev. 9: 3083–3096.
  • Caterina, J. J., T. M. Ryan, K. M. Pawlik, R. D. Palmiter, R. L. Brinster, R. R. Behringer, and T. M. Townes 1991. Human β-globin locus control region: analysis of the 5′ DNase I hypersensitive site HS2 in transgenic mice. Proc. Natl. Acad. Sci. USA 88: 1626–1630.
  • Chada, K., J. Magram, and F. Costantini 1986. An embryonic pattern of expression of a human fetal globin gene in transgenic mice. Nature 319: 685–689.
  • Choi, O., and J. Engel 1988. Developmental regulation of β-globin gene switching. Cell 55: 17–26.
  • Collins, F. S., and S. M. Weissman 1984. The molecular genetics of human hemoglobin. Prog. Nucleic Acid Res. Mol. Biol. 31: 315–462.
  • Dillon, N., J. Strouboulis, and F. Grosveld 1995. The regulation of human β-globin gene expression: polarity of transcriptional competition in the human β-globin locus Molecular biology of hemoglobin switching. In: Stamatoyannopoulos, G.23–28Intercept Ltd., Andover, England.
  • Enver, T., A. J. Ebens, W. C. Forrester, and G. Stamatoyannopoulos 1989. The human β-globin locus activation region alters the developmental fate of a human fetal globin gene in transgenic mice. Proc. Natl. Acad. Sci. USA 86: 7033–7037.
  • Enver, T., N. Raich, A. J. Ebens, T. Papayannopoulou, F. Costantini, and G. Stamatoyannopoulos 1990. Developmental regulation of human fetal-to-adult globin gene switching in transgenic mice. Nature 344: 309–313.
  • Fiering, S., E. Epner, K. Robinson, Y. Zhuang, A. Telling, M. Hu, D. I. K. Martin, T. Enver, T. J. Ley, and M. Groudine 1995. Targeted deletion of 5′HS2 of the murine β-globin LCR reveals that it is not essential for proper regulation of the β-globin locus. Genes Dev. 9: 2203–2213.
  • Forrester, W. C., U. Novak, R. Gelinas, and M. Groudine 1989. Molecular analysis of the human β-globin locus activation region. Proc. Natl. Acad. Sci. USA 86: 5439–5443.
  • Fraser, P., J. Hurst, P. Collis, and F. Grosveld 1990. DNase I hypersensitive sites 1, 2 and 3 of the human β-globin dominant control region direct position-independent expression. Nucleic Acids Res. 18: 3503–3508.
  • Furukawa, T., P. A. Navas, B. M. Josephson, K. R. Peterson, T. Papayannopoulou, and G. Stamatoyannopoulos 1995. Coexpression of ɛ, Gγ and Aγ globin mRNA in embryonic red blood cells from a single copy β-YAC transgenic mouse. Blood Cells Mol. Dis. 21: 168–178.
  • Gaensler, K. M., M. Kitamura, and Y. W. Kan 1993. Germ-line transmission and developmental regulation of a 150-kb yeast artificial chromosome containing the human β-globin locus in transgenic mice. Proc. Natl. Acad. Sci. USA 90: 11381–11385.
  • Gallagher, P. G., D. E. Sabatino, M. Romana, A. P. Cline, L. J. Garrett, D. M. Bodine, and B. G. Forget. A human β-spectrin gene promoter directs high level expression in erythroid, but not muscle or neural cells. Submitted for publication.
  • Grosveld, F., G. B. van Assendelft, D. R. Greaves, and G. Kollias 1987. Position-independent, high-level expression of the human β-globin gene in transgenic mice. Cell 51: 975–985.
  • Hanscombe, O., D. Whyatt, P. Fraser, N. Yannoutsos, D. Greaves, N. Dillon, and F. Grosveld 1991. Importance of globin gene order for correct developmental expression. Genes Dev. 5: 1387–1394.
  • Hogan, B., F. Costantini, and E. Lacy 1986. Manipulating the mouse embryo. A laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Hug, B. A., R. L. Wesselschmidt, S. Fiering, M. A. Bender, E. Epner, M. Groudine, and T. J. Ley 1996. Analysis of mice containing a targeted deletion of the murine β-globin locus control region 5′ hypersensitive site 3. Mol. Cell. Biol. 16: 2906–2912.
  • Jane, S. M., and J. M. Cunningham 1996. Molecular mechanisms of hemoglobin switching. Int. J. Biochem. Cell Biol. 28: 1197–1209.
  • Jane, S. M., P. A. Ney, E. F. Vanin, D. L. Gumucio, and A. W. Nienhuis 1992. Identification of a stage selector element in the human gamma-globin gene promoter that fosters preferential interaction with the 5′ HS2 enhancer when in competition with the beta-promoter. EMBO J. 11: 2961–2969.
  • Jane, S. M., A. W. Nienhuis, and J. M. Cunningham 1995. Hemoglobin switching in man and chicken is mediated by a heteromeric complex between the ubiquitous transcription factor CP2 and a developmentally specific protein. EMBO J. 14: 97–105 (Erratum, 14:854.)
  • Kollias, G., N. Wrighton, J. Hurst, and F. Grosveld 1986. Regulated expression of human Aγ-, β- and hybrid γβ-globin genes in transgenic mice: manipulation of developmental expression patterns. Cell 46: 89–94.
  • Liu, D., J. C. Chang, P. Moi, W. Jiu, Y. W. Kan, and P. T. Curtin 1992. Dissection of the enhancer activity of β-globin 5′ DNase I-hypersensitive site 2 in transgenic mice. Proc. Natl. Acad. Sci. USA 89: 3899–3903.
  • Liu, Q., J. Bungert, and J. Engel 1997. Mutation of gene-proximal regulatory elements disrupts human ɛ-, γ-, and β-globin expression in yeast artificial chromosome transgenic mice. Proc. Natl. Acad. Sci. USA 94: 169–174.
  • Magram, J., K. Chada, and F. Costantini 1985. Developmental regulation of a cloned adult β-globin gene in transgenic mice. Nature 315: 338–340.
  • Maniatis, T., E. F. Fritsch, and J. Sambrook 1982. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Martin, D. I., S. Fiering, and M. Groudine 1996. Regulation of β-globin gene expression: straightening out the locus. Curr. Opin. Genet. Dev. 6: 488–495.
  • Miller, B. A., M. Salameh, M. Ahmed, N. Olivieri, T. Huisman, S. Orkin, and D. Nathan 1987. Analysis of high fetal hemoglobin production in sickle cell anemia patients from the eastern province of Saudi Arabia Developmental control of globin gene expression. In: Stamatoyannopoulos, G., and A. Nienhuis415–426Alan R. Liss, Inc., New York, N.Y.
  • Ney, P. A., B. P. Sorrentino, K. T. McDonagh, and A. W. Nienhuis 1990. Tandem AP-1-binding sites within the human β-globin dominant control region function as an inducible enhancer in erythroid cells. Genes Dev. 4: 993–1006.
  • Noguchi, C. T., G. P. Rodgers, G. Serjeant, and A. N. Schechter 1988. Levels of fetal hemoglobin necessary for treatment of sickle cell disease. N. Engl. J. Med. 318: 96–99.
  • Paszty, C., C. M. Brion, E. Manci, H. E. Witkowska, M. E. Stevens, N. Mohandas, and E. M. Rubin 1997. Transgenic knockout mice with exclusively human sickle hemoglobin and sickle cell disease. Science 278: 876–878.
  • Perrine, R. P., M. J. Brown, J. B. Clegg, D. J. Weatherall, and A. May 1972. Benign sickle cell anaemia. Lancet ii: 1163–1167.
  • Peterson, K. R., C. H. Clegg, C. Huxley, B. M. Josephson, H. S. Haugen, T. Furukawa, and G. Stamatoyannopoulos 1993. Transgenic mice containing a 248-kb yeast artificial chromosome carrying the human β-globin locus display proper developmental control of human globin genes. Proc. Natl. Acad. Sci. USA 90: 7593–7597.
  • Peterson, K. R., C. H. Clegg, P. A. Navas, E. J. Norton, T. G. Kimbrough, and G. Stamatoyannopoulos 1996. Effect of deletion of 5′HS3 or 5′HS2 of the human β-globin locus control region on the developmental regulation of globin gene expression in β-globin locus yeast artificial chromosome transgenic mice. Proc. Natl. Acad. Sci. USA 93: 6605–6609.
  • Peterson, K. R., and G. Stamatoyannopoulos 1993. Role of gene order in developmental control of human γ- and β-globin gene expression. Mol. Cell. Biol. 13: 4836–4843.
  • Peterson, K. R., Q. L. Li, C. H. Clegg, T. Furukawa, P. A. Navas, E. J. Norton, T. C. Kimbrough, and G. Stamatoyannopoulos 1995. Use of yeast artificial chromosomes (YACs) in studies of mammalian development: production of β-globin locus YAC mice carrying human globin developmental mutants. Proc. Natl. Acad. Sci. USA 92: 5655–5659.
  • Pham, C. T. N., D. M. MacIvor, B. A. Hug, J. W. Heusel, and T. J. Ley 1996. Long range disruption of gene expression by a selectable marker cassette. Proc. Natl. Acad. Sci. USA 93: 13090–13095.
  • Philipsen, S., D. Talbot, P. Fraser, and F. Grosveld 1990. The β-globin dominant control region: hypersensitive site 2. EMBO J. 9: 2159–2167.
  • Porcu, S., M. Kitamura, E. Witkowska, Z. Zhang, A. Mutero, C. Lin, J. Chang, and K. M. Gaensler 1997. The human β-globin locus introduced by YAC transfer exhibits a specific and reproducible pattern of developmental regulation in transgenic mice. Blood 90: 4602–4609.
  • Prchal, J. T., T. Papayannopoulou, and S. Yoon 1990. Patterns of spectrin transcripts in erythroid and non-erythroid cells. J. Cell. Physiol. 144: 287–294.
  • Raich, N., T. Enver, B. Nakamoto, B. Josephson, T. Papayannopoulou, and G. Stamatoyannopoulos 1990. Autonomous developmental control of human embryonic globin gene switching in transgenic mice. Science 250: 1147–1149.
  • Rucknagel, D. L., S. A. Sarniak, C. F. Whitten, and D. A. Odenheimer 1987. Fetal hemoglobin concentration predicts disease severity in children with sickle cell anemia Developmental control of globin gene expression. In: Stamatoyannopoulos, G., and A. Nienhuis487–496Alan R. Liss, Inc., New York, N.Y.
  • Ryan, T. M., R. R. Behringer, N. C. Martin, T. M. Townes, R. D. Palmiter, and R. L. Brinster 1989. A single erythroid-specific DNase I super-hypersensitive site activates high levels of human β-globin gene expression in transgenic mice. Genes Dev. 3: 314–323.
  • Ryan, T. M., D. J. Ciavatta, and T. M. Townes 1997. Knockout-transgenic mouse model of sickle cell disease. Science 278: 873–875.
  • Shehee, W. R., P. Oliver, and O. Smithies 1993. Lethal thalassemia after insertional disruption of the mouse major adult beta-globin gene. Proc. Natl. Acad. Sci. USA 90: 3177–3181.
  • Sorrentino, B., P. Ney, D. Bodine, and A. W. Nienhuis 1990. A 46 base pair enhancer sequence within the locus activation region is required for induced expression of the γ-globin gene during erythroid differentiation. Nucleic Acids Res. 18: 2721–2731.
  • Stamatoyannopoulos, G., and A. W. Nienhuis 1993. Hemoglobin switching Molecular basis of blood diseases. In: Stamatoyannopoulos, G., A. W. Nienhuis, and H. Varmus107–156Saunders, Philadelphia, Pa.
  • Starck, J., R. Sarker, M. Romana, A. Bhargava, A. L. Scarpa, M. Tanaka, J. W. Chamberlain, S. M. Weissman, and B. G. Forget 1994. Developmental regulation of human γ- and β-globin genes in the absence of the locus control region. Blood 84: 1656–1665.
  • Townes, T. M., J. B. Lingrel, H. Y. Chen, R. L. Brinster, and R. D. Palmiter 1985. Erythroid-specific expression of human β-globin genes in transgenic mice. EMBO J. 4: 1715–1723.
  • Tuan, D., W. Solomon, I. London, and D. Lee 1989. An erythroid-specific, developmental-stage-independent enhancer far upstream of the human ‘β-like globin’ genes. Proc. Natl. Acad. Sci. USA 86: 2554–2558.
  • Whitney, J. B.III. 1978. Simplified typing of mouse hemoglobin (Hbb) phenotypes using cystamine. Biochem. Genet. 16: 667–672.
  • Wijgerde, M., F. Grosveld, and P. Fraser 1995. Transcription complex stability and chromatin dynamics in vivo. Nature 377: 209–213.
  • Winkelmann, J. C., and B. G. Forget 1993. Erythroid and nonerythroid spectrins. Blood 81: 3173–3185.
  • Wood, W. G., J. B. Clegg, and D. J. Weatherall 1977. Developmental biology of human hemoglobins. Prog. Hematol. 10: 43–90.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.