23
Views
41
CrossRef citations to date
0
Altmetric
Cell Growth and Development

The RafC1 Cysteine-Rich Domain Contains Multiple Distinct Regulatory Epitopes Which Control Ras-Dependent Raf Activation

, , , , , , & show all
Pages 6698-6710 | Received 26 Mar 1998, Accepted 18 Aug 1998, Published online: 28 Mar 2023

REFERENCES

  • Barettino, D., M. Feigenbutz, R. Valcàrel, and H. G. Stunnenberg 1994. Improved method for PCR-mediated site-directed mutagenesis. Nucleic Acids Res. 22: 541–542.
  • Bartel, P. L., and S. Fields 1995. Analyzing protein-protein interactions using the two-hybrid system. Methods Enzymol. 254: 241–263.
  • Block, C., and A. Wittinghofer 1995. Switching to Rac and Rho. Structure 3: 1281–1284.
  • Block, C., R. Janknecht, C. Herrmann, N. Nassar, and A. Wittinghofer 1996. Quantitative structure-activity analysis correlating Ras/Raf interaction in vitro to Raf activation in vivo. Nat. Struct. Biol. 3: 244–250.
  • Brtva, T. R., J. K. Drugan, S. Ghosh, R. S. Terell, S. Campbell-Burk, R. M. Bell, and C. J. Der 1995. Two distinct Raf domains mediate interaction with Ras. J. Biol. Chem. 270: 9809–9812.
  • Bruder, J. T., G. Heidecker, and U. R. Rapp 1992. Serum-, TPA-, and Ras-induced expression from Ap-1/Ets-driven promoters requires Raf-1 kinase. Genes Dev. 6: 545–556.
  • Chevray, P. M., and D. Nathans 1992. Protein interaction cloning in yeast: identification of mammalian proteins that react with the leucine zipper of jun. Proc. Natl. Acad. Sci. USA 89: 5789–5793.
  • Chow, Y.-H., K. Pumiglia, T. H. Jun, P. Dent, T. W. Sturgill, and R. Jove 1995. Functional mapping of the N-terminal regulatory domain in the human Raf-1 protein kinase. J. Biol. Chem. 270: 14100–14106.
  • Chuang, E., D. Barnard, L. Hettich, X.-F. Zhang, J. Avruch, and M. Marshall 1994. Critical binding and regulatory interactions between Ras and Raf occur through a small, stable N-terminal domain of Raf and specific Ras effector residues. Mol. Cell. Biol. 14: 5318–5325.
  • Clackson, T., and J. A. Wells 1995. A hot spot of binding energy in a hormone-receptor interface. Science 267: 383–386.
  • Clark, G. J., J. K. Drugan, R. S. Terell, C. Bradham, C. J. Der, R. M. Bell, and S. Campbell 1996. Peptides containing a consensus Ras binding sequence from Raf-1 and the GTPase activating protein NF1 inhibit Ras function. Proc. Natl. Acad. Sci. USA 93: 1577–1581.
  • Clark, G. J., J. K. Drugan, K. L. Rossmann, J. W. Carpenter, K. Rogers-Graham, H. Fu, C. J. Der, and S. L. Campbell 1997. 14-3-3 ζ negatively regulates Raf-1 activity by interactions with the Raf-1 cysteine-rich domain. J. Biol. Chem. 272: 20990–20993.
  • Cutler, R. E., and D. K. Morrison 1997. Mammalian Raf-1 is activated by mutations that restore Raf signaling in Drosophila. EMBO J. 16: 1953–1960.
  • Daum, G., I. Eisenmann-Tappe, H. W. Fries, J. Troppmair, and U. Rapp 1994. The ins and outs of Raf kinases. Trends Biochem. Sci. 19: 474–480.
  • Drugan, J. K., R. Khosravi-Far, M. A. White, C. J. Der, Y.-J. Sung, Y.-W. Hwang, and S. L. Campbell 1996. Ras interaction with two distinct binding domains in Raf-1 may be required for Ras transformation. J. Biol. Chem. 271: 233–237.
  • Emerson, S. D., D. S. Waugh, J. E. Scheffler, K. L. Tsao, K. M. Prinzo, and D. C. Fry 1994. Chemical shift assignments and folding topology of the Ras-binding domain of human Raf-1 determined by heteronuclear three-dimensional NMR spectroscopy. Biochemistry 33: 7745–7752.
  • Fabian, J. R., A. B. Vojtek, J. A. Cooper, and D. K. Morrison 1994. A single amino acid change in Raf-1 inhibits Ras binding and alters Raf-1 function. Proc. Natl. Acad. Sci. USA 91: 5982–5986.
  • Flory, E., C. K. Weber, P. Chen, A. Hoffmeyer, C. Jassoy, and U. R. Rapp 1998. Plasma membrane-targeted Raf kinase activates NF-κB and human immunodeficiency virus type 1 replication in T lymphocytes. J. Virol. 72: 2788–2794.
  • Fridman, M., A. Tikoo, M. Varga, A. Murphy, M. S. A. Nur-E-Kamal, and H. Maruta 1994. The minimal fragments of c-Raf-1 and NF-1 that can suppress v-Ha-Ras-induced malignant phenotype. J. Biol. Chem. 269: 30105–30108.
  • Ghosh, S., and R. M. Bell 1994. Identification of discrete segments of human Raf-1 kinase critical for high affinity binding to Ha-Ras. J. Biol. Chem. 269: 30785–30788.
  • Ghosh, S., W. Q. Xie, A. F. G. Quest, G. M. Mabrouk, J. C. Strum, and R. M. Bell 1994. The cysteine-rich region of Raf-1 kinase contains zinc, translocates to liposomes, and is adjacent to a segment that binds GTP-Ras. J. Biol. Chem. 269: 10000–10007.
  • Gorman, C., R. H. Skinner, J. V. Skelly, S. Neidle, and P. N. Lowe 1996. Equilibrium and kinetic measurements reveal rapidly reversible binding of Ras to Raf. J. Biol. Chem. 271: 6713–6719.
  • Hart, K. C., and D. J. Donoghue 1997. Derivatives of activated H-ras lacking C-terminal lipid modifications retain transforming ability if targeted to the correct subcellular location. Oncogene 14: 945–953.
  • Heidecker, G., M. Huleihel, J. L. Cleveland, W. Kolch, T. W. Beck, P. Lloyd, T. Pawson, and U. R. Rapp 1990. Mutational activation of c-raf-1 and definition of the minimal transforming sequence. Mol. Cell. Biol. 10: 2503–2512.
  • Herrmann, C., G. A. Martin, and A. Wittinghofer 1995. Quantitative analysis of the complex between p21ras and the Ras-binding domain of the human Raf-1 protein kinase. J. Biol. Chem. 270: 2901–2905.
  • Hommel, U., M. Zurini, and M. Luyten 1994. Solution structure of a cysteine rich domain of rat protein kinase C. Nat. Struct. Biol. 1: 383–387.
  • Hu, C.-D., K.-I. Kariya, M. Tamada, K. Akasaka, K. Shirouzu, M. Shirouzu, Y. Shigeyuki, and T. Kataoka 1995. Cysteine-rich region of Raf-1 interacts with activator domain of post-translationally modified Ha-Ras. J. Biol. Chem. 270: 30274–30277.
  • Hu, C.-D., K.-I. Kariya, G. Kotani, M. Shirouzu, S. Yokoyama, and T. Kataoka 1997. Coassociation of Rap1A and Ha-Ras with Raf-1 N-terminal region interferes with Ras-dependent activation of Raf-1. J. Biol. Chem. 272: 11702–11705.
  • Huwiler, A., J. Brunner, R. Hummel, M. Vervoodeldonk, S. Stabel, H. Van den Bosch, and J. Pfeilschifter 1996. Ceramide-binding and activation defines protein kinase c-Raf as a ceramide-activated protein kinase. Proc. Natl. Acad. Sci. USA 93: 6959–6963.
  • Ichikawa, S., H. Hatanaka, Y. Takeuchi, S. Ohno, and F. Inagaki 1995. Solution structure of cysteine-rich domain of protein kinase Cα. J. Biochem. 117: 566–574.
  • Jaitner, B. K. 1997. Ph.D. thesis. Ruhr-Universität-Bochum, Bochum, Germany.
  • Jaitner, B. K., J. Becker, T. Linnemann, C. Herrmann, A. Wittinghofer, and C. Block 1997. Discrimination of amino acids mediating Ras binding from non-interacting residues affecting Raf activation by double mutant analysis. J. Biol. Chem. 272: 29927–29993.
  • Janknecht, R., and A. Nordheim 1993. Gene regulation by Ets proteins. Biochim. Biophys. Acta 1155: 346–356.
  • Janknecht, R., W. H. Ernst, V. Pingoud, and A. Nordheim 1993. Activation of ternary complex factor Elk-1 by MAP kinases. EMBO J. 12: 5097–5104.
  • Janknecht, R. 1996. Analysis of the ERK-stimulated ETS transcription factor ER81. Mol. Cell. Biol. 16: 1550–1556.
  • Jin, L., B. M. Fendly, and J. A. Wells 1992. High resolution functional analysis of antibody-antigen interactions. J. Mol. Biol. 226: 851–865.
  • Klebe, R. J., J. V. Harriss, Z. D. Sharp, and M. D. Douglas 1983. A general method for polyethylene-glycol-induced genetic transformation of bacteria and yeast. Gene 25: 333–341.
  • Koide, H., T. Satoh, M. Nakafuku, and Y. Kaziro 1993. GTP-dependent association of Raf-1 with H-Ras: identification of Raf as a target downstream of Ras in mammalian cells. Proc. Natl. Acad. Sci. USA 90: 8683–8686.
  • Kolch, W., G. Heidecker, P. Lloyd, and U. R. Rapp 1991. Raf-1 protein kinase is required for growth of induced NIH/3T3 cells. Nature 349: 426–428.
  • Leevers, S. J., H. F. Paterson, and C. J. Marshall 1994. Requirement for Ras in Raf activation is overcome by targeting Raf to the plasma membrane. Nature 369: 411–414.
  • Lowy, D. R., and B. M. Willumsen 1993. Function and regulation of Ras. Annu. Rev. Biochem. 62: 851–891.
  • Lu, X., M. B. Melnick, J.-C. Hsu, and N. Perrimon 1994. Genetic and molecular analyses of mutations involved in Drosophila raf signal transduction. EMBO J. 13: 2592–2599.
  • Luo, Z., B. Diaz, M. S. Marshall, and J. Avruch 1997. An intact Raf zinc finger is required for optimal binding to processed Ras and for Ras-dependent activation in situ. Mol. Cell. Biol. 17: 46–53.
  • Meloche, S., G. Pagès, and J. Pouysségur 1992. Functional expression and growth factor activation of an epitope-tagged p44 mitogen activated protein kinase, p44mapk. Mol. Biol. Cell 3: 63–71.
  • Michaud, N. R., J. R. Fabian, K. D. Mathes, and D. K. Morrison 1995. 14-3-3 is not essential for Raf-1 function: identification of Raf proteins that are biologically activated in a 14-3-3- and Ras-independent manner. Mol. Cell. Biol. 15: 3390–3397.
  • Michaud, N. R., M. Therrien, A. Cacace, L. C. Edsall, S. Spiegel, G. M. Rubin, and D. K. Morrison 1997. KSR stimulates Raf-1 activity in a kinase-independent manner. Proc. Natl. Acad. Sci. USA 94: 12792–12796.
  • Moodie, S. A., B. M. Willumsen, M. J. Weber, and A. Wolfman 1993. Complexes of Ras-GTP with Raf-1 and mitogen activated protein kinase kinase. Science 260: 1658–1661.
  • Moraefi, I., M. LaFevre-Bernt, F. Sicheri, M. Huse, C.-H. Lee, J. Kuriyan, and W. T. Miller 1997. Activation of the Src-family tyrosine kinase Hck by SH3 domain displacement. Nature 385: 650–653.
  • Morrison, D. K., Cutler, R. E.Jr. 1997. The complexity of Raf-1 regulation. Curr. Opin. Cell Biol. 9: 174–179.
  • Mott, H. R., J. W. Carpenter, S. Zhong, S. Ghosh, R. M. Bell, and S. L. Campbell 1996. The solution structure of the Raf-1 cysteine-rich domain: a novel Ras and phospholipid binding site. Proc. Natl. Acad. Sci. USA 93: 8312–8317.
  • Müller, G., P. Storz, S. Bourteele, H. Döppler, K. Pfizenmaier, H. Mischak, A. Philipp, K. Kaiser, and W. Kolch 1998. Regulation of Raf-1 kinase by TNF via its second messenger ceramide and crosstalk with mitogenic signalling. EMBO J. 17: 732–742.
  • Nassar, N., G. Horn, C. Herrmann, A. Scherer, F. McCormick, and A. Wittinghofer 1995. The 2.2Å crystal structure of the Ras-binding domain of the serine/threonine kinase c-Raf1 in complex with Rap1A and a GTP analogue. Nature 375: 554–560.
  • Nassar, N., G. Horn, C. Herrmann, C. Block, R. Janknecht, and A. Wittinghofer 1996. Ras/Rap effector specificity determined by charge reversal. Nat. Struct. Biol. 3: 723–729.
  • Nicholls, A., K. A. Sharp, and B. Honig 1991. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11: 281–296.
  • Onrust, R., P. Herzmark, P. Chi, P. D. Garcia, O. Lichtarge, C. Kingsley, and H. R. Bourne 1997. Receptor and βγ binding sites in the α subunit of the retinal G protein transducin. Science 275: 381–384.
  • Pumiglia, K., Y.-H. Chow, J. Fabian, D. Morrison, S. Decker, and R. Jove 1995. Raf-1 N-terminal sequences necessary for Ras-Raf interaction and signal transduction. Mol. Cell. Biol. 15: 398–406.
  • Roy, S., A. Lane, J. Yan, R. McPherson, and J. F. Hancock 1997. Activity of plasma membrane recruited Raf-1 is regulated by Ras via the Raf zinc finger. J. Biol. Chem. 272: 20139–20145.
  • Scheffler, J. E., D. S. Waugh, E. Bekesi, S. E. Kiefer, J. E. LoSardo, A. Neri, K. M. Prinzo, K.-L. Tsao, B. Wegrzynski, S. D. Emerson, and D. C. Fry 1994. Characterization of a 78-residue fragment of c-Raf-1 that comprises a minimal binding domain for the interaction with Ras-GTP. Biochemistry 35: 22340–22346.
  • Sicheri, F., I. Moarefi, and J. Kuriyan 1997. Crystal structure of the Src family tyrosine kinase Hck. Nature 385: 602–609.
  • Stokoe, D., S. G. Macdonald, K. Cadwallader, M. Symons, and J. F. Hancock 1994. Activation of Raf as a result of recruitment to the plasma membrane. Science 264: 1463–1467.
  • Swift, A. M., and C. E. Machamer 1991. A Golgi retention signal in a membrane-spanning domain of coronavirus E1 protein. J. Cell Biol. 115: 19–30.
  • Van Aelst, L., M. Barr, S. Marcus, A. Polverino, and M. Wigler 1993. Complex formation between Ras and Raf and other protein kinases. Proc. Natl. Acad. Sci. USA 90: 6213–6217.
  • Voijtek, A. B., S. M. Hollenberg, and J. A. Cooper 1993. Mammalian Ras interacts directly with the serine/threonine kinase Raf. Cell 74: 205–214.
  • Warne, P. H., P. Rodriguez Viciana, and J. Downward 1993. Direct interaction of Ras and the amino-terminal region of Raf-1 in vitro. Nature 364: 352–355.
  • Wells, J. A. 1991. Systematic mutational analysis of protein-protein interfaces. Methods Enzymol. 202: 390–410.
  • Wells, J. A. 1995. Structural and functional epitopes in the growth hormone receptor complex. Bio/Technology 13: 647–651.
  • Xu, R. X., T. Pawelczyk, T.-H. Xia, and S. C. Brown 1997. NMR structure of a protein kinase C-γ phorbol-binding domain and study of protein-lipid micelle interactions. Biochemistry 36: 10709–10717.
  • Xu, W., S. C. Harrison, and M. J. Eck 1997. Three-dimensional structure of the tyrosine kinase c-Src. Nature 385: 595–602.
  • Zhang, G., M. G. Kazanietz, P. M. Blumberg, and J. H. Hurley 1995. Crystal structure of the Cys2 activator-binding domain of protein kinase Cδ in complex with phorbol ester. Cell 81: 917–924.
  • Zhang, X.-F., J. Settleman, J. M. Kyriakis, E. Takeuchi-Suzuki, S. J. Elledge, M. S. Marshall, J. T. Bruder, U. R. Rapp, and J. Avruch 1993. Normal and oncogenic p21ras proteins bind to the amino-terminal regulatory domain of c-Raf-1. Nature 364: 308–313.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.