5
Views
36
CrossRef citations to date
0
Altmetric
Gene Expression

Characterization of Novel Parent-Specific Epigenetic Modifications Upstream of the Imprinted Mouse H19Gene

, &
Pages 6767-6776 | Received 11 May 1998, Accepted 07 Aug 1998, Published online: 28 Mar 2023

REFERENCES

  • Allen, N. D., S. C. Barton, K. Hilton, M. L. Norris, and M. A. Surani 1994. A functional analysis of imprinting in parthenogenetic embryonic stem cells. Development 120: 1473–1482.
  • Antequera, F., and A. Bird 1993. CpG islands DNA methylation: molecular biology and functional significance. In: Jost, J. P., and H. P. Saluz169–185Birkhäuser Verlag, Basel, Switzerland.
  • Bartolomei, M. S., A. L. Webber, M. E. Brunkow, and S. M. Tilghman 1993. Epigenetic mechanisms underlying the imprinting of the mouse H19 gene. Genes Dev. 7: 1663–1673.
  • Barton, S. C., A. C. Ferguson-Smith, R. Fundele, and M. A. Surani 1991. Influence of paternally imprinted genes on development. Development 113: 679–688.
  • Beddington, R. S. P., and E. J. Robertson 1989. An assessment of the developmental potential of embryonic stem cells in the midgestation mouse embryo. Development 105: 733–737.
  • Beechey, C. V., and B. M. Cattanach 1997. Genetic and physical imprinting map of the mouse. Mouse Genome 95: 100–105.
  • Bestor, T. H., and B. Tycko 1996. Creation of genomic methylation patterns. Nat. Genet. 12: 363–367.
  • Brandeis, M., D. Frank, I. Keshet, Z. Siegfried, M. Mendelsohn, A. Nemes, V. Temper, A. Razin, and H. Cedar 1994. Sp1 elements protect a CpG island from de novo methylation. Nature 371: 435–438.
  • Brandeis, M., T. Kafri, M. Ariel, J. R. Chaillet, J. McCarrey, A. Razin, and H. Cedar 1993. The ontogeny of allele-specific methylation associated with imprinted genes in the mouse. EMBO J. 12: 3669–3677.
  • Brook, F. A., and R. L. Gardner 1997. The origin and efficient derivation of embryonic stem cells in the mouse. Proc. Natl. Acad. Sci. USA 94: 5709–5712.
  • Christy, R. J., V. W. Yang, J. M. Ntambi, D. E. Geiman, W. H. Landschulz, A. D. Friedman, A. D. Nakabeppu, T. J. Kelly, and M. D. Lane 1989. Differentiation-induced gene expression in 3T3-L1 preadipocytes: CCAT/enhancer binding protein interacts with and activates the promoters of two adipocyte-specific genes. Genes Dev. 3: 1323–1335.
  • Efstratiadis, A. 1994. Parental imprinting of autosomal mammalian genes. Curr. Opin. Genet. Dev. 4: 265–280.
  • Elson, D. A., and M. S. Bartolomei 1997. A 5′ differentially methylated sequence and the 3′-flanking region are necessary for H19 transgene imprinting. Mol. Cell. Biol. 17: 309–317.
  • Ephrussi, A., G. M. Church, S. Tonegawa, and W. Gilbert 1985. B lineage specific interactions of an immunoglobulin enhancer with cellular factors in vivo. Science 227: 134–140.
  • Feil, R., J. Walter, N. D. Allen, and W. Reik 1994. Developmental control of allelic methylation in the imprinted mouse Igf2 and H19 genes. Development 120: 2933–2943.
  • Ferguson-Smith, A. C., H. Sasaki, B. M. Cattanach, and M. A. Surani 1993. Parental-origin-specific epigenetic modification of the mouse H19 gene. Nature 362: 751–755.
  • Friedman, A. D., W. H. Landschulz, and S. L. McKnight 1989. CCAAT/enhancer binding protein activates the promoter of the serum albumin gene in cultured hepatoma cells. Genes Dev. 3: 1314–1322.
  • Höller, M., G. Westin, J. Jiricny, and W. Schaffner 1988. Sp1 transcription factor binds DNA and activates transcription even when the binding site is CpG methylated. Genes Dev. 2: 1127–1135.
  • Hornstra, I. K., and T. P. Yang 1992. Multiple in vivo footprints are specific to the active allele of the X-linked human hypoxanthine phosphoribosyltransferase gene 5′ region: implications for X chromosome inactivation. Mol. Cell. Biol. 12: 5345–5354.
  • Komura, J., S. A. Sheardown, N. Brockdorff, J. Singer-Sam, and A. D. Riggs 1997. In vivo ultraviolet footprinting and dimethyl sulfate footprinting of the 5′ region of the expressed and silent Xist alleles. J. Biol. Chem. 272: 10975–10980.
  • Latham, K. E., A. S. Doherty, C. D. Scott, and R. M. Schultz 1994. Igf2r and Igf2 gene expression in androgenetic, gynogenetic, and parthenogenetic preimplantation mouse embryos: absence of regulation by genomic imprinting. Genes Dev. 8: 290–299.
  • Leighton, P. A., R. S. Ingram, J. Eggenschwiler, A. Efstratiadis, and S. M. Tilghman 1995. Disruption of imprinting caused by deletion of the H19 gene region in mice. Nature 375: 34–39.
  • Li, E., C. Beard, and R. Jaenisch 1993. Role for DNA methylation in genomic imprinting. Nature 366: 362–365.
  • Macleod, D., J. Charlton, J. Mullins, and A. P. Bird 1994. Sp1 sites in the mouse aprt gene promoter are required to prevent methylation of the CpG island. Genes Dev. 8: 2282–2292.
  • Mann, J. R. 1992. Properties of androgenetic and parthenogenetic mouse embryonic stem cell lines; are genetic imprints conserved? Semin. Dev. Biol. 3: 77–85.
  • Mann, J. R., I. Gadi, M. L. Harbison, S. J. Abbondanzo, and C. L. Stewart 1990. Androgenetic mouse embryonic stem cells are pluripotent and cause skeletal defects in chimeras: implications for genetic imprinting. Cell 62: 251–260.
  • Mann, J. R., and C. L. Stewart 1991. Development to term of mouse androgenetic aggregation chimeras. Development 113: 1325–1333.
  • Maxam, A. M., and W. Gilbert 1980. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 65: 499–560.
  • Mueller, P. R., and B. Wold 1989. In vivo footprinting of a muscle-specific enhancer by ligation mediated PCR. Science 246: 780–786.
  • Neumann, B., P. Kubicka, and D. P. Barlow 1995. Characteristics of imprinted genes. Nat. Genet. 9: 12–13.
  • Olek, A., and J. Walter 1997. The pre-implantation ontogeny of the H19 methylation imprint. Nat. Genet. 17: 275–276.
  • Pfeifer, G. P., and A. D. Riggs 1991. Chromatin differences between active and inactive X chromosomes revealed by genomic footprinting of permeabilized cells using DNaseI and ligation-mediated PCR. Genes Dev. 5: 1102–1113.
  • Pfeifer, G. P., J. Singer-Sam, and A. D. Riggs 1993. Analysis of methylation and chromatin structure. Methods Enzymol. 225: 567–583.
  • Pfeifer, G. P., S. D. Steigerwald, R. S. Hansen, S. M. Gartler, and A. D. Riggs 1990. Polymerase chain reaction-aided genomic sequencing of an X chromosome-linked CpG island: methylation patterns suggest clonal inheritance, CpG site autonomy, and an explanation of activity state stability. Proc. Natl. Acad. Sci. USA 87: 8252–8256.
  • Pfeifer, G. P., S. D. Steigerwald, P. R. Mueller, B. Wold, and A. D. Riggs 1989. Genomic sequencing and methylation analysis by ligation mediated PCR. Science 246: 810–813.
  • Pfeifer, K., P. A. Leighton, and S. M. Tilghman 1996. The structural H19 gene is required for transgene imprinting. Proc. Natl. Acad. Sci. USA 93: 13876–13883.
  • Pondel, M. D., S. Murphy, L. Pearson, C. Craddock, and N. J. Proudfoot 1995. Sp1 functions in a chromatin-dependent manner to augment human α-globin promoter activity. Proc. Natl. Acad. Sci. USA 92: 7237–7241.
  • Ripoche, M.-A., C. Kress, F. Poirier, and L. Dandolo 1997. Deletion of the H19 transcription unit reveals the existence of a putative imprinting control element. Genes Dev. 11: 1596–1604.
  • Rubin, C. M., and C. W. Schmid 1980. Pyrimidine-specific chemical reactions useful for DNA sequencing. Nucleic Acids Res. 8: 4613–4619.
  • Shemer, R., and A. Razin 1996. Establishment of imprinted methylation patterns during development Epigenetic mechanisms of gene regulation. In: Russo, V. E. A., R. A. Martienssen, and A. D. Riggs215–229Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Szabó, P., and J. R. Mann 1994. Expression and methylation of imprinted genes during in vitro differentiation of mouse parthenogenetic and androgenetic embryonic stem cell lines. Development 120: 1651–1660.
  • Szabó, P. E., and J. R. Mann 1995. Allele-specific expression and total expression levels of imprinted genes during early mouse development: implications for imprinting mechanisms. Genes Dev. 9: 3097–3108.
  • Törmänen, V. T., P. M. Swiderski, B. E. Kaplan, G. P. Pfeifer, and A. D. Riggs 1992. Extension product capture improves genomic sequencing and DNase I footprinting by ligation-mediated PCR. Nucleic Acids Res. 20: 5487–5488.
  • Tremblay, K. D., K. L. Duran, and M. S. Bartolomei 1997. A 5′ 2-kilobase-pair region of the imprinted mouse H19 gene exhibits exclusive paternal methylation throughout development. Mol. Cell. Biol. 17: 4322–4329.
  • Tremblay, K. D., J. R. Saam, R. S. Ingram, S. M. Tilghman, and M. S. Bartolomei 1995. A paternal-specific methylation imprint marks the alleles of the mouse H19 gene. Nat. Genet. 9: 407–413.
  • Yoo-Warren, H., V. Pachnis, R. S. Ingram, and S. M. Tilghman 1988. Two regulatory domains flank the mouse H19 gene. Mol. Cell. Biol. 8: 4707–4715.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.