9
Views
28
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

Schizosaccharomyces pombe Retrotransposon Tf2 Mobilizes Primarily through Homologous cDNA Recombination

, &
Pages 6839-6852 | Received 20 Mar 1998, Accepted 19 Aug 1998, Published online: 28 Mar 2023

REFERENCES

  • Ajioka, J. W., and D. L. Hartl 1989. Population dynamics of transposable elements Mobile DNA. In: Berg, D. E., and M. M. Howe939–958American Society for Microbiology, Washington, D.C.
  • Atwood, A., J. Choi, and H. L. Levin 1998. The application of a homologous recombination assay revealed amino acid residues in an LTR-retrotransposon that were critical for integration. J. Virol. 72: 1324–1333.
  • Atwood, A., J.-H. Lin, and H. L. Levin 1996. The retrotransposon Tf1 assembles virus-like particles that contain excess Gag relative to integrase because of a regulated degradation process. Mol. Cell. Biol. 16: 338–346.
  • Basi, G., E. Schmid, and K. Maundrell 1993. TATA box mutations in the Schizosaccharomyces pombe nmt1 promoter affect transcription efficiency but not the transcription start point or thiamine repressibility. Gene 123: 131–136.
  • Bilanchone, V. W., J. A. Claypool, P. T. Kinsey, and S. B. Sandmeyer 1993. Positive and negative regulatory elements control expression of the yeast retrotransposon Ty3. Genetics 134: 685–700.
  • Boeke, J. D., and V. G. Corces 1989. Transcription and reverse transcription of retrotransposons. Annu. Rev. Microbiol. 43: 403–434.
  • Boeke, J. D., D. Eichinger, D. Castrillon, and G. R. Fink 1988. The Saccharomyces cerevisiae genome contains functional and nonfunctional copies of transposon Ty1. Mol. Cell. Biol. 8: 1432–1442.
  • Boeke, J. D., F. LaCroute, and G. R. Fink 1984. A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol. Gen. Genet. 197: 345–346.
  • Boeke, J. D., and J. P. Stoye 1997. Retrotransposons, endogenous retroviruses, and the evolution of retroelements Retroviruses. In: Varmus, H., S. Hughes, and J. Coffin343–435Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Boeke, J. D., C. A. Styles, and G. R. Fink 1986. Saccharomyces cerevisiae SPT3 gene is required for transposition and transpositional recombination of chromosomal Ty elements. Mol. Cell. Biol. 6: 3575–3581.
  • Braiterman, L. T., G. M. Monokian, D. J. Eichinger, S. L. Merbs, A. Gabriel, and J. D. Boeke 1994. In-frame linker insertion mutagenesis of yeast transposon Ty1: phenotypic analysis. Gene 139: 19–26.
  • Casacuberta, J. M., S. Vernhettes, and M. A. Grandbastien 1995. Sequence variability within the tobacco retrotransposon Tnt1 population. EMBO J. 14: 2670–2678.
  • Chalker, D. L., and S. B. Sandmeyer 1992. Ty3 integrates within the region of RNA polymerase III transcription initiation. Genes Dev. 6: 117–128.
  • Craigie, R. 1992. Hotspots and warm spots: integration specificity of retroelements. Trends Genet. 8: 187–189.
  • Curcio, M. J., and D. J. Garfinkel 1991. Single-step selection for Ty1 element retrotransposition. Proc. Natl. Acad. Sci. USA 88: 936–940.
  • Devine, S. E., and J. D. Boeke 1996. Integration of the yeast retrotransposon Ty1 is targeted to regions upstream of genes transcribed by RNA polymerase III. Genes Dev. 10: 620–633.
  • Feinberg, A. P., and B. Vogelstein 1984. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 137: 266–267.
  • Fulton, A. M., P. D. Rathjen, S. M. Kingsman, and A. J. Kingsman 1988. Upstream and downstream transcriptional control signals in the yeast retrotransposon, Ty. Nucleic Acids Res. 16: 5439–5458.
  • Grallert, B., P. Nurse, and T. E. Patterson 1993. A study of integrative transformation in Schizosaccharomyces pombe. Mol. Gen. Genet. 238: 26–32.
  • Grimm, C., and J. Kohli 1988. Observations on integrative transformation in Schizosaccharomyces pombe. Mol. Gen. Genet. 215: 87–93.
  • Hansen, L. J., and S. B. Sandmeyer 1990. Characterization of a transpositionally active Ty3 element and identification of the Ty3 integrase protein. J. Virol. 64: 2599–2607.
  • Hoff, E. F. 1997. Ph.D. thesis. Johns Hopkins University School of Medicine, Baltimore, Md.
  • Hoff, E. F., and J. D. Boeke. Unpublished data.
  • Jin, Y. K., and J. L. Bennetzen 1989. Structure and coding properties of Bs1, a maize retrovirus-like transposon. Proc. Natl. Acad. Sci. USA 86: 6235–6239.
  • Ke, N., and D. F. Voytas 1997. High frequency cDNA recombination of the Saccharomyces retrotransposon Ty5: the LTR mediates formation of tandem elements. Genetics 147: 545–556.
  • Keeney, J. B., and J. D. Boeke 1994. Efficient targeted integration at leu1-32 and ura4-294 in Schizosaccharomyces pombe. Genetics 136: 849–856.
  • Kinsey, P. T., and S. B. Sandmeyer 1995. Ty3 transposes in mating populations of yeast: a novel transposition assay for Ty3. Genetics 139: 81–94.
  • Kirchner, J., C. M. Connolly, and S. B. Sandmeyer 1995. Requirement of RNA polymerase III transcription factors for in vitro position-specific integration of a retroviruslike element. Science 267: 1488–1491.
  • Kirchner, J., and S. Sandmeyer 1993. Proteolytic processing of Ty3 proteins is required for transposition. J. Virol. 67: 19–28.
  • Kunkel, T. A. 1985. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc. Natl. Acad. Sci. USA 82: 488–492.
  • Le, M. H., D. Duricka, and G. H. Karpen 1995. Islands of complex DNA are widespread in Drosophila centric heterochromatin. Genetics 141: 283–303.
  • Levin, H. L. 1995. A novel mechanism of self-primed reverse transcription defines a new family of retroelements. Mol. Cell. Biol. 15: 3310–3317.
  • Levin, H. L. 1996. An unusual mechanism of self-primed reverse transcription requires the RNase H domain of reverse transcriptase to cleave an RNA duplex. Mol. Cell. Biol. 16: 5645–5654.
  • Levin, H. L., and J. D. Boeke 1992. Demonstration of retrotransposition of the Tf1 element in fission yeast. EMBO J. 11: 1145–1153.
  • Levin, H. L., D. C. Weaver, and J. D. Boeke 1993. Novel gene expression mechanism in a fission yeast retroelement: Tf1 proteins are derived from a single primary translation product. EMBO J. 12: 4885–4895.
  • Levin, H. L., D. C. Weaver, and J. D. Boeke 1990. Two related families of retrotransposons from Schizosaccharomyces pombe. Mol. Cell. Biol. 10: 6791–6798.
  • Lin, J.-H., and H. L. Levin 1997. Self-primed reverse transcription is a mechanism shared by several LTR-containing retrotransposons. RNA 3: 952–953.
  • Lin, J.-H., and H. L. Levin 1997. A complex structure in the mRNA of Tf1 is recognized and cleaved to generate the primer of reverse transcription. Genes Dev. 11: 270–285.
  • Losson, R., and F. Lacroute 1983. Plasmids carrying the OMP decarboxylase structural and regulatory genes: transcription regulation in a foreign environment. Cell 32: 371–377.
  • Maundrell, K. 1990. nmt1 of fission yeast. A highly transcribed gene completely repressed by thiamine. J. Biol. Chem. 265: 10857–10864.
  • Melamed, C., Y. Nevo, and M. Kupiec 1992. Involvement of cDNA in homologous recombination between Ty elements in Saccharomyces cerevisiae. Mol. Cell. Biol. 12: 1613–1620.
  • Merkulov, G. V., K. M. Swiderek, C. B. Brachmann, and J. D. Boeke 1996. A critical proteolytic cleavage site near the C terminus of the yeast retrotransposon Ty1 Gag protein. J. Virol. 70: 5548–5556.
  • Mertins, P., and D. Gallwitz 1987. A single intronless action gene in the fission yeast Schizosaccharomyces pombe: nucleotide sequence and transcripts formed in homologous and heterologous yeast. Nucleic Acids Res. 15: 7369–7379.
  • Monokian, G. M., L. T. Braiterman, and J. D. Boeke 1994. In-frame linker insertion mutagenesis of yeast transposon Ty1: mutations, transposition and dominance. Gene 139: 9–18.
  • Nevo-Caspi, Y., and M. Kupiec 1996. Induction of Ty recombination in yeast by cDNA and transcription: role of the RAD1 and RAD52 genes. Genetics 144: 947–955.
  • Orlinsky, K. J., J. Gu, M. Hoyt, S. Sandmeyer, and T. M. Menees 1996. Mutations in the Ty3 major homology region affect multiple steps in Ty3 retrotransposition. J. Virol. 70: 3440–3448.
  • Orr-Weaver, T. L., J. W. Szostak, and R. J. Rothstein 1981. Yeast transformation: a model system for the study of recombination. Proc. Natl. Acad. Sci. USA 78: 6354–6358.
  • Rein, A. 1994. Retroviral RNA packaging: a review. Arch. Virol. Suppl. 9: 513–522.
  • Rio, D. C. 1990. Molecular mechanisms regulating Drosophila P element transposition. Annu. Rev. Genet. 24: 543–578.
  • Robertson, H. M., and D. J. Lampe 1995. Distribution of transposable elements in arthropods. Annu. Rev. Entomol. 40: 333–357.
  • Robzyk, K., and Y. Kassir 1992. A simple and highly efficient procedure for rescuing autonomous plasmids from yeast. Nucleic Acids Res. 20: 3790.
  • Sandmeyer, S. B. 1992. Yeast retrotransposons. Curr. Opin. Genet. Dev. 2: 705–711.
  • Sandmeyer, S. B., and T. M. Menees 1996. Morphogenesis at the retrotransposon-retrovirus interface: gypsy and copia families in yeast and Drosophila. Curr. Top. Microbiol. Immunol. 214: 261–296.
  • SanMiguel, P., A. Tikhonov, Y. K. Jin, N. Motchoulskaia, D. Zakharov, A. Melake-Berhan, P. S. Springer, K. J. Edwards, M. Lee, Z. Avramova, and J. L. Bennetzen 1996. Nested retrotransposons in the intergenic regions of the maize genome. Science 274: 765–768.
  • Sharon, G., T. J. Burkett, and D. J. Garfinkel 1994. Efficient homologous recombination of Ty1 element cDNA when integration is blocked. Mol. Cell. Biol. 14: 6540–6551.
  • Smit, A. F. 1996. The origin of interspersed repeats in the human genome. Curr. Opin. Genet. Dev. 6: 743–748.
  • Suoniemi, A., A. Narvanto, and A. H. Schulman 1996. The BARE-1 retrotransposon is transcribed in barley from an LTR promoter active in transient assays. Plant Mol. Biol. 31: 295–306.
  • Voytas, D. F. 1996. Retroelements in genome organization. Science 274: 737–738.
  • Weaver, D. C., G. V. Shpakovski, E. Caputo, H. L. Levin, and J. D. Boeke 1993. Sequence analysis of closely related retrotransposon families from fission yeast. Gene 131: 135–139.
  • Youngren, S. D., J. D. Boeke, N. J. Sanders, and D. J. Garfinkel 1988. Functional organization of the retrotransposon Ty from Saccharomyces cerevisiae: Ty protease is required for transposition. Mol. Cell. Biol. 8: 1421–1431.
  • Zou, S., N. Ke, J. M. Kim, and D. F. Voytas 1996. The Saccharomyces retrotransposon Ty5 integrates preferentially into regions of silent chromatin at the telomeres and mating loci. Genes Dev. 10: 634–645.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.