10
Views
63
CrossRef citations to date
0
Altmetric
Gene Expression

The Putative Nucleic Acid Helicase Sen1p Is Required for Formation and Stability of Termini and for Maximal Rates of Synthesis and Levels of Accumulation of Small Nucleolar RNAs in Saccharomyces cerevisiae

&
Pages 6885-6896 | Received 22 Jun 1998, Accepted 15 Sep 1998, Published online: 28 Mar 2023

REFERENCES

  • Balakin, A. G., G. S. Schneider, M. S. Corbett, J. Ni, and M. J. Fournier 1993. SnR31, snR32, and snR33: three novel, non-essential snRNAs from Saccharomyces cerevisiae. Nucleic Acids Res. 21: 5391–5397.
  • Balakin, A. G., L. Smith, and M. J. Fournier 1996. The RNA world of the nucleolus: two major families of small RNAs defined by different box elements with related functions. Cell 86: 823–834.
  • Brownlee, G. G. 1972. Determination of Sequences in RNA. American Elsevier Publishing, New York, N.Y.
  • Caffarelli, E., M. Arese, B. Santoro, P. Fragapane, and I. Bozzoni 1994. In vitro study of processing of the intron-encoded U16 small nucleolar RNA in Xenopus laevis. Mol. Cell. Biol. 14: 2966–2974.
  • Caffarelli, E., A. Fatica, S. Prislei, E. De Gregorio, P. Fragapane, and I. Bozzoni 1996. Processing of the intron-encoded U16 and U18 snoRNAs: the conserved C and D boxes control both the processing reaction and the stability of the mature snoRNA. EMBO J. 15: 1121–1131.
  • Caffarelli, E., L. Maggi, A. Fatica, J. Jiricny, and I. Bozzoni 1997. A novel Mn++-dependent ribonuclease that functions in U16 snoRNA processing in X. laevis. Biochem. Biophys. Res. Commun. 233: 514–517.
  • Cavaille, J., and J. P. Bachellerie 1996. Processing of fibrillarin-associated snoRNAs from pre-mRNA introns: an exonucleolytic process exclusively directed by the common stem-box terminal structure. Biochimie 78: 443–456.
  • Cavaille, J., M. Nicoloso, and J. P. Bachellerie 1996. Targeted ribose methylation of RNA in vivo directed by tailored antisense RNA guides. Nature 383: 732–735.
  • Czaplinski, K., Y. Weng, K. W. Hagan, and S. W. Peltz 1995. Purification and characterization of the Upf1 protein: a factor involved in translation and mRNA degradation. RNA 1: 610–623.
  • DeMarini, D. J., M. Winey, D. Ursic, F. Webb, and M. R. Culbertson 1992. SEN1, a positive effector of tRNA-splicing endonuclease in Saccharomyces cerevisiae. Mol. Cell. Biol. 12: 2154–2164.
  • Devereux, J., P. Jaeberli, and O. Smithies 1984. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 12: 387–395.
  • Donis-Keller, H. 1979. Site specific enzymatic cleavage of RNA. Nucleic Acids Res. 7: 179–192.
  • Fragapane, P., S. Prislei, A. Michienzi, E. Caffarelli, and I. Bozzoni 1993. A novel small nucleolar RNA (U16) is encoded inside a ribosomal protein intron and originates by processing of the pre-mRNA. EMBO J. 12: 2921–2928.
  • Ganot, P., M. Caizergues-Ferrer, and T. Kiss 1997. The family of box ACA small nucleolar RNAs is defined by an evolutionarily conserved secondary structure and ubiquitous sequence elements essential for RNA accumulation. Genes Dev. 11: 941–956.
  • Hill, J. E., A. M. Myers, T. J. Koerner, and A. Tzagoloff 1986. Yeast/E. coli shuttle vectors with multiple unique restriction sites. Yeast 2: 163–167.
  • Huang, G. M., A. Jarmolowski, J. C. Struck, and M. J. Fournier 1992. Accumulation of U14 small nuclear RNA in Saccharomyces cerevisiae requires box C, box D, and a 5′,3′ terminal stem. Mol. Cell. Biol. 12: 4456–4463.
  • Kiss-Laszlo, Z., Y. Henry, J. P. Bachellerie, M. Caizergues-Ferrer, and T. Kiss 1996. Site-specific ribose methylation of preribosomal RNA: a novel function for small nucleolar RNAs. Cell 85: 1077–1088.
  • Koonin, E. V. 1992. A new group of putative RNA helicases. Trends Biochem. Sci. 17: 495–497.
  • Lafontaine, D., and D. Tollervey 1995. Trans-acting factors in yeast pre-rRNA and pre-snoRNA processing. Biochem. Cell Biol. 73: 803–812.
  • Leeds, P., S. W. Peltz, A. Jacobson, and M. R. Culbertson 1991. The product of the yeast UPF1 gene is required for rapid turnover of mRNAs containing a premature translational termination codon. Genes Dev. 5: 2303–2314.
  • Leeds, P., J. M. Wood, B. S. Lee, and M. R. Culbertson 1992. Gene products that promote mRNA turnover in Saccharomyces cerevisiae. Mol. Cell. Biol. 12: 2165–2177.
  • Lelivelt, M., and M. Culbertson. Unpublished data.
  • Mattaj, I. W., D. Tollervey, and B. Seraphin 1993. Small nuclear RNAs in messenger RNA and ribosomal RNA processing. FASEB J. 7: 47–53.
  • Maxwell, E. S., and M. J. Fournier 1995. The small nucleolar RNAs. Annu. Rev. Biochem. 64: 897–934.
  • Mendenhall, M. D., P. Leeds, H. Fen, L. Mathison, M. Zwick, C. Sleiziz, and M. R. Culbertson 1987. Frameshift suppressor mutations affecting the major glycine transfer RNAs of Saccharomyces cerevisiae. J. Mol. Biol. 194: 41–58.
  • Ni, J., A. L. Tien, and M. J. Fournier 1997. Small nucleolar RNAs direct site-specific synthesis of pseudouridine in ribosomal RNA. Cell 89: 565–573.
  • Nishimura, S. 1979. Modified Nucleosides in tRNA Transfer RNA: structure, properties, and recognition. In: Schimmel, P. R., D. Soll, and J. N. Abelson59–79Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Petfalski, E., T. Dandekar, V. Henry, and D. Tollervey 1998. Processing of the precursors to small nucleolar RNAs and rRNAs requires common components. Mol. Cell. Biol. 18: 1181–1189.
  • Rasmussen, T. P., and M. R. Culbertson 1996. Analysis of yeast trimethylguanosine-capped RNAs by midwestern blotting. Gene 182: 89–96.
  • Rubin, G. M. 1973. The nucleotide sequence of Saccharomyces cerevisiae 5.8 S ribosomal ribonucleic acid. J. Biol. Chem. 248: 3860–3875.
  • Scherer, S., and R. W. Davis 1979. Replacement of chromosomal segments with altered DNA sequences constructed in vitro. Proc. Natl. Acad. Sci. USA 76: 4951–4955.
  • Shibahara, S., S. Mukai, T. Nishihara, H. Inoue, E. Ohtsuka, and H. Morisawa 1987. Site-directed cleavage of RNA. Nucleic Acids Res. 15: 4403–4415.
  • Sikorski, R. S., and P. Hieter 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122: 19–27.
  • Steinmetz, E. J., and D. A. Brow 1996. Repression of gene expression by an exogenous sequence element acting in concert with a heterogeneous nuclear ribonucleoprotein-like protein, Nrd1, and the putative helicase Sen1. Mol. Cell. Biol. 16: 6993–7003.
  • Terns, M. P., C. Grimm, E. Lund, and J. E. Dahlberg 1995. A common maturation pathway for small nucleolar RNAs. EMBO J. 14: 4860–4871.
  • Tollervey, D. 1996. Small nucleolar RNAs guide ribosomal RNA methylation. Science 273: 1056–1057.
  • Tollervey, D., and T. Kiss 1997. Function and synthesis of small nucleolar RNAs. Curr. Opin. Cell Biol. 9: 337–342.
  • Tycowski, K. T., C. M. Smith, M. D. Shu, and J. A. Steitz 1996. A small nucleolar RNA requirement for site-specific ribose methylation of rRNA in Xenopus. Proc. Natl. Acad. Sci. USA 93: 14480–14485.
  • Ursic, D., D. J. DeMarini, and M. R. Culbertson 1995. Inactivation of the yeast Sen1 protein affects the localization of nucleolar proteins. Mol. Gen. Genet. 249: 571–584.
  • Ursic, D., K. L. Himmel, K. A. Gurley, F. Webb, and M. R. Culbertson 1997. The yeast SEN1 gene is required for the processing of diverse RNA classes. Nucleic Acids Res. 25: 4778–4785.
  • van Tol, H., N. Stange, J. Gross, and H. Beier 1987. A human and a plant intron-containing tRNATyr gene are both transcribed in a HeLa cell extract but spliced along different pathways. EMBO J. 6: 35–41.
  • Watkins, N. J., R. D. Leverette, L. Xia, M. T. Andrews, and E. S. Maxwell 1996. Elements essential for processing intronic U14 snoRNA are located at the termini of the mature snoRNA sequence and include conserved nucleotide boxes C and D. RNA 2: 118–133.
  • Winey, M., and M. R. Culbertson 1988. Mutations affecting the tRNA-splicing endonuclease activity of Saccharomyces cerevisiae. Genetics 118: 609–617.
  • Xia, L., N. J. Watkins, and E. S. Maxwell 1997. Identification of specific nucleotide sequences and structural elements required for intronic U14 snoRNA processing. RNA 3: 17–26.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.