71
Views
340
CrossRef citations to date
0
Altmetric
Gene Expression

Classification of gas5 as a Multi-Small-Nucleolar-RNA (snoRNA) Host Gene and a Member of the 5′-Terminal Oligopyrimidine Gene Family Reveals Common Features of snoRNA Host Genes

&
Pages 6897-6909 | Received 10 Jul 1998, Accepted 18 Aug 1998, Published online: 28 Mar 2023

REFERENCES

  • Agrawal, M. G., and L. H. Bowman 1987. Transcriptional and translational regulation of ribosomal protein formation during mouse myoblast differentiation. J. Biol. Chem. 262: 4868–4875.
  • Amaldi, F., and P. Pierandrei-Amaldi TOP genes: a translationaly controlled class of genes including those coding for ribosomal proteins Progress in molecular and subcellular biology In: Jeanteur, P.1819971–17Springer-Verlag, Berlin, Germany.
  • Avni, D., S. Shama, F. Loreni, and O. Meyuhas 1994. Vertebrate mRNAs with a 5′-terminal pyrimidine tract are candidates for translational repression in quiescent cells: characterization of the translational cis-regulatory element. Mol. Cell. Biol. 14: 3822–3833.
  • Balakin, A. G., L. Smith, and M. J. Fournier 1996. The RNA world of the nucleolus: two major families of small RNAs defined by different box elements with related functions. Cell 86: 823–834.
  • Bally, M., J. Hughes, and G. Cesareni 1988. SnR30: a new, essential small nuclear RNA from Saccharomyces cerevisiae. Nucleic Acids Res. 16: 5291–5303.
  • Beltrame, M., and D. Tollervey 1995. Base pairing between U3 and the pre-ribosomal RNA is required for 18S rRNA synthesis. EMBO J. 14: 4350–4356.
  • Bortolin, M. L., and T. Kiss 1998. Human U19 intron-encoded snoRNA is processed from a long primary transcript that possesses little potential for protein coding. RNA 4: 445–454.
  • Bousquet-Antonelli, C., Y. Henry, J.-P. Gelunge, M. Caizergues-Ferrer, and T. Kiss 1997. A small nucleolar RNP protein is required for pseudouridylation of eukaryotic ribosomal RNAs. EMBO J. 16: 4769–4775.
  • Caffarelli, E., M. Arese, B. Santoro, P. Fragapane, and I. Bozzoni 1994. In vitro study of processing of the intron-encoded U16 small nucleolar RNA in Xenopus laevis. Mol. Cell. Biol. 14: 2966–2974.
  • Caffarelli, E., A. Fatica, S. Prislei, E. DeGregorio, P. Frangepane, and I. Bozzoni 1996. Processing of the intron-encoded U16 and U18 snoRNAs: the conserved C and D boxes control both the processing reaction and the stability of the mature snoRNA. EMBO J. 15: 1121–1131.
  • Camacho-Vanegas, O., F. Weighardt, C. Ghigna, F. Amaldi, S. Riva, and G. Biamonti 1997. Growth-dependent and growth-independent translation of messengers for heterogeneous nuclear ribonucleoproteins. Nucleic Acids Res. 25: 3950–3954.
  • Cavaille, J., and J.-P. Bachellerie 1996. Processing of fibrillarin-associated snoRNAs from pre-mRNA introns: an exonucleolytic process exclusively directed by the common stem-box terminal structure. Biochimie 78: 443–456.
  • Cavaille, J., M. Nicoloso, and J.-P. Bachellerie 1996. Targeted ribose methylation of RNA in vivo directed by tailored antisense RNA guides. Nature 383: 732–735.
  • Chu, S., R. H. Archer, J. M. Zengel, and L. Lindahl 1994. The RNA of RNase MRP is required for normal processing of the ribosomal RNA. Proc. Natl. Acad. Sci. USA 91: 659–663.
  • Ciccarelli, C., L. Philipson, and V. Sorrentino 1990. Regulation of expression of growth arrest-specific genes in mouse fibroblasts. Mol. Cell. Biol. 10: 1525–1529.
  • Coccia, E. M., C. Cicala, C. Charlesworth, C. Ciccarelli, G. B. Rossi, L. Philipson, and V. Sorrentino 1992. Regulation and expression of a growth arrest-specific gene (gas5) during growth, differentiation, and development. Mol. Cell. Biol. 12: 3514–3521.
  • Colombo, P., J. Yon, and M. Fried 1991. The organization and expression of the human L7a ribosomal protein gene. Biochim. Biophys. Acta 1129: 93–95.
  • Corden, J. L., and M. Patturajan 1997. A CTD function linking transcription to splicing. Trends Biochem. Sci. 22: 413–416.
  • Dantonel, J.-C., K. G. K. Murthy, J. L. Manley, and L. Tora 1997. Transcription factor TFIID recruits factor CPSF for formation of 3′ end of mRNA. Nature 389: 399–402.
  • Devereux, J., P. Haeberli, and O. Smithies 1984. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 12: 387–395.
  • Dworniczak, B., and M. E. Mirault 1987. Structure and expression of a human gene coding for a 71 kd heat shock ‘cognate’ protein. Nucleic Acids Res. 15: 5181–5197.
  • Eichler, D. C., and N. Craig 1995. Processing of eukaryotic ribosomal RNA. Prog. Nucleic Acid Res. Mol. Biol. 49: 197–239.
  • Ganot, P., M.-L. Bortolin, and T. Kiss 1997. Site-specific pseudouridine formation in pre-ribosomal RNA is guided by small nucleolar RNAs. Cell 89: 799–809.
  • Ganot, P., M. Caizergues-Ferrer, and T. Kiss 1997. The family of box ACA small nucleolar RNAs is defined by an evolutionarily conserved secondary structure and ubiquitous sequence elements essential for RNA accumulation. Genes Dev. 11: 941–956.
  • Geyer, P. K., O. Meyuhas, R. P. Perry, and L. F. Johnson 1982. Regulation of ribosomal protein mRNA content and translation in growth-stimulated mouse fibroblasts. Mol. Cell. Biol. 2: 685–693.
  • Hadjiolov, A. A. 1985. The nucleolus and ribosome biogenesis. Springer-Verlag, Vienna, Austria.
  • Hammond, M. L., W. Merrick, and L. H. Bowman 1991. Sequences mediating the translation of mouse S16 ribosomal protein mRNA during myoblast differentiation and in vitro and possible control points for the in vitro translation. Genes Dev. 5: 1723–1736.
  • Huang, S., and J. W. B. Hershey 1989. Translational initiation factor expression and ribosomal protein gene expression are repressed coordinately but by different mechanisms in murine lymphosarcoma cells treated with glucocorticoids. Mol. Cell. Biol. 9: 3679–3684.
  • Hughes, J. M. X., and M. J. Ares 1991. Depletion of U3 small nucleolar RNA inhibits cleavage in the 5′ external spacer of yeast pre-ribosomal RNA and prevents formation of 18S ribosomal RNA. EMBO J. 10: 4231–4239.
  • Jackers, P., F. Minoletti, D. Belotti, N. Clausse, G. Sozzi, M. E. Sobel, and V. Castronovo 1996. Isolation from a multigene family of the active human gene of the metastasis-associated multifunctional protein 37LRP/p40 at chromosome 3p21.3. Oncogene 13: 495–503.
  • Jaeger, J. A., D. H. Turner, and M. Zuker 1989. Predicting optimal and suboptimal secondary structure for RNA. Methods Enzymol. 183: 281–306.
  • Jeffries, H. B. J., S. Fumagalli, P. B. Dennis, C. Reinhard, R. B. Pearson, and G. Thomas 1997. Rapamycin suppresses 5′TOP mRNA translation through inhibition of p70S6k. EMBO J. 12: 3693–3704.
  • Kaspar, R. L. R., M. W. White, R. E. Rhoads, and D. R. Morris 1990. Simultaneous cytoplasmic redistribution of ribosomal protein L32 mRNA and phosphorylation of eukaryotic initiation factor 4E after mitogenic stimulation of Swiss 3T3 cells. J. Biol. Chem. 265: 3619–3622.
  • Kass, S., K. Tyc, J. A. Steitz, and B. Sollner-Webb 1990. The U3 small nucleolar ribonucleoprotein functions in the first step of preribosomal RNA processing. Cell 60: 897–908.
  • Kato, S., S. Sekine, S.-W. Oh, N.-S. Kim, Y. Umezawa, N. Abe, M. Yokoyama-Kobayashi, and T. Aoki 1994. Construction of a human full-length cDNA bank. Gene 150: 243–250.
  • Kenmochi, N., N. Maeda, and T. Tanaka 1992. The structure and complete sequence of the gene encoding chicken ribosomal protein L5. Gene 119: 215–219.
  • Kiss, T., M.-L. Bortolin, and W. Filipowicz 1996. Characterization of the intron-encoded U19 RNA, a new mammalian small nucleolar RNA that is not associated with fibrillarin. Mol. Cell. Biol. 16: 1391–1400.
  • Kiss, T., and W. Filipowicz 1995. Exonucleolytic processing of small nucleolar RNAs from pre-mRNA introns. Genes Dev. 9: 1411–1424.
  • Kiss-Laszlo, Z., Y. Henry, J.-P. Bachellerie, M. Caizergues-Ferrer, and T. Kiss 1996. Site-specific ribose methylation of pre-ribosomal RNA: a novel function for small nucleolar RNAs. Cell 85: 1077–1088.
  • Kozak, M. 1996. Interpreting cDNA sequences: some insights from studies on translation. Mamm. Genome 7: 563–574.
  • Leader, D. J., G. P. Clark, J. Watters, A. F. Beven, P. J. Shaw, and J. W. S. Brown 1997. Clusters of multiple different small nucleolar RNA genes in plants are expressed as and processed from polycistronic pre-snoRNAs. EMBO J. 16: 5742–5751.
  • Levy, S., D. Avni, N. Hariharan, R. P. Perry, and O. Meyuhas 1991. Oligopyrimidine tract at the 5′ end of mammalian ribosomal protein mRNAs is required for their translational control. Proc. Natl. Acad. Sci. USA 88: 3319–3323.
  • Liang, W. Q., and M. J. Fournier 1995. U14 base-pairs with 18S rRNA: a novel snoRNA interaction required for rRNA processing. Genes Dev. 9: 2433–2443.
  • Loreni, F., and F. Amaldi 1992. Translational regulation of ribosomal protein synthesis in Xenopus cultured cells: mRNA relocation between polysomes and RNP during nutritional shifts. Eur. J. Biochem. 205: 1027–1032.
  • Loreni, F., I. Ruberti, I. Bozzoni, P. Pierandrei-Amaldi, and F. Amaldi 1985. Nucleotide sequence of the L1 ribosomal protein gene of Xenopus laevis: remarkable homology among introns. EMBO J. 4: 3483–3488.
  • Maden, B. E. 1997. Guides to 95 new angles. Nature 389: 129–131.
  • Maden, B. E. H. 1990. The numerous modified nucleotides in eukaryotic ribosomal RNA. Prog. Nucleic Acids Res. 39: 241–303.
  • Maden, T. 1996. Click here for methylation. Nature 383: 675–676.
  • Maquat, L. 1995. When cells stop making sense: effects of nonsense codons on RNA metabolism in vertebrate cells. RNA 1: 453–465.
  • Mariottini, P., and F. Amaldi 1990. The 5′ untranslated region of mRNA for ribosomal protein S19 is involved in its translational regulation during Xenopus development. Mol. Cell. Biol. 10: 816–822.
  • Maxwell, E. S., and M. J. Fournier 1995. The small nucleolar RNAs. Annu. Rev. Biochem. 64: 897–934.
  • Meyuhas, O., D. Avni, and S. Shama 1996. Translational control of ribosomal protein mRNAs in eukaryotes Translational control. In: Hershey, J. W. B., M. B. Mathews, and N. Sonenberg363–388Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Meyuhas, O., E. A. Thompson, and R. P. Perry 1987. Glucocorticoids selectively inhibit translation of ribosomal protein mRNAs in P1798 lymphosarcoma cells. Mol. Cell. Biol. 7: 2691–2699.
  • Morrissey, J. P., and D. Tollervey 1993. Yeast snR30 is a small nucleolar RNA required for 18S rRNA synthesis. Mol. Cell. Biol. 13: 2469–2477.
  • Nakanishi, T., K. Kohno, M. Ishiura, H. Ohashi, and T. Uchida 1988. Complete nucleotide sequence and characterization of the 5′-flanking region of mammalian elongation factor 2 gene. J. Biol. Chem. 263: 6384–6391.
  • Neckelmann, N., C. K. Warner, A. Chung, J. Kudoh, S. Minosha, R. Fukuyama, M. Maekawa, Y. Shimizu, N. Shimizu, J. D. Liu, and D. C. Wallace 1989. The human ATP synthase β subunit gene: sequence analysis, chromosome assignment, and differential expression. Genomics 5: 829–843.
  • Ni, J., A. L. Tien, and M. J. Fournier 1997. Small nucleolar RNAs direct site-specific synthesis of pseudouridine in ribosomal RNA. Cell 89: 565–573.
  • Nicoloso, M., M. Caizergues-Ferrer, B. Michot, M. C. Azum, and J.-P. Bachellerie 1994. U20, a novel small nucleolar RNA, is encoded in an intron of the nucleolin gene in mammals. Mol. Cell. Biol. 14: 5766–5776.
  • Nicoloso, M., L.-H. Qu, B. Michot, and J.-P. Bachellerie 1996. Intron-encoded, antisense small nucleolar RNAs: the characterization of nine novel species points to their direct role as guides for the 2′-O-ribose methylation of rRNAs. J. Mol. Biol. 260: 178–195.
  • Nielsen, P. J., and H. Trachsel 1988. The mouse protein synthesis initiation factor 4A gene family includes two related functional genes which are differentially expressed. EMBO J. 7: 2097–2105.
  • O’Brien, C. A., and S. L. Wolin 1994. A possible role for the 60-kDa Ro autoantigen in a discard pathway for defective 5S rRNA precursors. Genes Dev. 8: 2891–2903.
  • Peculis, B. 1997. RNA processing: pocket guides to ribosomal RNA. Curr. Biol. 7: 480–482.
  • Peculis, B. A., and J. A. Steitz 1993. Disruption of U8 nucleolar snRNA inhibits 5.8S and 28S rRNA processing in the Xenopus oocyte. Cell 73: 1233–1245.
  • Pelczar, P., and W. Filipowicz 1998. The host gene for intronic U17 small nucleolar RNAs in mammals has no protein-coding potential and is a member of the 5′-terminal oligopyrimidine gene family. Mol. Cell. Biol. 18: 4509–4518.
  • Philipson, L. Personal communication.
  • Philipson, L. Unpublished results.
  • Pierandrei-Amaldi, P., E. Beccari, I. Bozzoni, and F. Amaldi 1985. Ribosomal protein production in normal and anucleoate Xenopus embryos: regulation at the posttranscriptional and translational levels. Cell 42: 317–323.
  • Prislei, S., A. Michienzi, C. Presutti, P. Fragapane, and I. Bozzoni 1993. Two different snoRNAs are encoded in introns of amphibian and human L1 ribosomal protein genes. Nucleic Acids Res. 21: 5824–5830.
  • Qu, L. H., Y. Henry, M. Nicoloso, B. Michot, M. C. Azum, M. H. Renalier, F. M. Caizergues, and J.-P. Bachellerie 1995. U24, a novel intron-encoded small nucleolar RNA with two 12 nt long, phylogenetically conserved complementarities to 28S rRNA. Nucleic Acids Res. 23: 2669–2676.
  • Qu, L. H., M. Nicoloso, B. Michot, M. C. Azum, F. M. Caizergues, M. H. Renalier, and J.-P. Bachellerie 1994. U21, a novel small nucleolar RNA with a 13 nt complementarity to 28S rRNA, is encoded in an intron of ribosomal protein L5 gene in chicken and mammals. Nucleic Acids Res. 22: 4073–4081.
  • Reddy, N. S., W. W. Roth, P. W. Bragg, and A. J. Wahba 1988. Isolation and mapping of a gene for protein synthesis initiation factor 4A and its expression during differentiation of murine erythroleukemia cells. Gene 70: 231–243.
  • Rosenthal, E. T., and L. Wordeman 1995. A protein similar to the 67 kDa laminin binding protein and p40 is probably a component of the translation machinery in Urechis caupo oocytes and embryos. J. Cell Sci. 108: 245–256.
  • Satoh, K., K. Narumi, T. Sakai, T. Abe, T. Kikuchi, K. Matsushima, S. Sindoh, and M. Motomiya 1992. Cloning of 67-kDa laminin receptor cDNA and gene expression in normal and malignant cell lines of the human lung. Cancer Lett. 62: 199–203.
  • Savino, R., and S. A. Gerbi 1990. In vivo disruption of Xenopus U3 snRNA affects ribosomal RNA processing. EMBO J. 9: 2299–2308.
  • Schmitt, M. E., and D. A. Clayton 1993. Nuclear RNase MRP is required for correct processing of pre-5.8S rRNA in Saccharomyces cerevisiae. Mol. Cell. Biol. 13: 7935–7941.
  • Schneider, C., R. M. King, and L. Philipson 1988. Genes specifically expressed at growth arrest of mammalian cells. Cell 54: 787–793.
  • Smith, C. M., and J. A. Steitz 1997. Sno storm in the nucleolus: new roles for myriad small RNPs. Cell 89: 669–672.
  • Sollner-Webb, B. 1993. Novel intron-encoded small nucleolar RNAs. Cell 75: 403–405.
  • Sollner-Webb, B., K. T. Tycowski, and J. A. Steitz 1996. Ribosomal RNA processing in eukaryotes Ribosomal RNA: structure, evolution, processing, and function in protein biosynthesis. In: Zimmerman, R. A., and A. E. Dahlberg469–490CRC Press, Boca Raton, Fla.
  • Srivastava, M., O. W. McBride, P. J. Fleming, H. B. Pollard, and A. L. Burns 1990. Genomic organization and chromosomal localization of the human nucleolin gene. J. Biol. Chem. 265: 14922–14931.
  • Steinmetz, E. J. 1997. Pre-mRNA processing and the CTD of RNA polymerase II: the tail that wags the dog? Cell 89: 491–494.
  • Tollervey, D. 1987. A yeast small nuclear RNA is required for normal processing of pre-ribosomal RNA. EMBO J. 6: 4169–4175.
  • Tollervey, D., and C. Guthrie 1985. Deletion of a yeast small nucleolar RNA gene impairs growth. EMBO J. 4: 3873–3878.
  • Tollervey, D., and T. Kiss 1997. Function and synthesis of small nucleolar RNAs. Curr. Opin. Cell Biol. 3: 337–342.
  • Tyc, K., and J. A. Steitz 1989. U3, U8 and U13 comprise a new class of mammalian snRNPs localized in the cell nucleolus. EMBO J. 8: 3113–3119.
  • Tycowski, K. T., M. Shu, and J. A. Steitz 1996. A mammalian gene with introns instead of exons generating stable RNA products. Nature 379: 464–466.
  • Tycowski, K. T., M.-D. Shu, and J. A. Steitz 1994. Requirement for intron-encoded U22 small nucleolar RNA in 18S ribosomal RNA maturation. Science 266: 1558–1561.
  • Tycowski, K. T., M.-D. Shu, and J. A. Steitz 1993. A small nucleolar RNA is processed from an intron of the human gene encoding ribosomal protein S3. Genes Dev. 7: 1176–1190.
  • Tycowski, K. T., C. M. Smith, M. Shu, and J. A. Steitz 1996. A small nucleolar RNA required for site-specific ribose methylation of rRNA in Xenopus. Proc. Natl. Acad. Sci. USA 93: 14480–14485.
  • Van den Ouweland, A. M. W., P. Kioschis, M. Verdijk, F. Tamanini, D. Toniolo, A. Poustka, and B. A. Van Oost 1992. Identification and characterization of a new gene in the human Xq28 region. Hum. Mol. Genet. 1: 269–273.
  • Wyatt, J. R., E. J. Sontheimer, and J. A. Steitz 1992. Site-specific crosslinking of mammalian snRNPs to the 5′ splice site prior to the first step of pre-messenger RNA splicing. Genes Dev. 6: 2542–2553.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.