22
Views
181
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Regulation of RasGRP via a Phorbol Ester-Responsive C1 Domain

, , , , &
Pages 6995-7008 | Received 21 Apr 1998, Accepted 21 Aug 1998, Published online: 28 Mar 2023

REFERENCES

  • Albright, C. F., B. W. Giddings, J. Liu, M. Vito, and R. A. Weinberg 1993. Characterization of a guanine nucleotide dissociation stimulator for a ras-related GTPase. EMBO J. 12: 339–347.
  • Aronheim, A., D. Engelberg, N. Li, N. Al-Alawi, J. Schlessinger, and M. Karin 1994. Membrane targeting of the nucleotide exchange factor Sos is sufficient for activating the Ras signaling pathway. Cell 78: 949–961.
  • Barnes, W. M. 1993. PCR amplification of up to 35-kb DNA with high fidelity and high yield from λ bacteriophage templates. Proc. Natl. Acad. Sci. USA 91: 2216–2220.
  • Boguski, M. S., and F. McCormick 1993. Proteins regulating Ras and its relatives. Nature 366: 643–654.
  • Bokoch, G. M., and C. J. Der 1993. Emerging concepts in the Ras superfamily of GTP-binding proteins. FASEB J. 7: 750–759.
  • Buchsbaum, R., J.-P. Telliez, S. Goonesekera, and L. A. Feig 1996. The N-terminal pleckstrin, coiled-coil, and IQ domains of the exchange factor Ras-GRF act cooperatively to facilitate activation by calcium. Mol. Cell. Biol. 16: 4888–4896.
  • Byrne, J. L., H. F. Paterson, and C. J. Marshall 1996. p21 Ras activation by the guanine nucleotide exchange factor Sos requires the Sos/Grb2 interaction and a second ligand-dependent signal involving the Sos N-terminus. Oncogene 13: 2005–2065.
  • Cantrell, D. 1996. T cell antigen receptor signal transduction pathways. Annu. Rev. Immunol. 14: 259–274.
  • Cen, H., G. Papageorge, W. C. Vass, K. Zhang, and D. R. Lowy 1993. Regulated and constitutive activity by CDC25Mm (GRF), a Ras-specific exchange factor. Mol. Cell. Biol. 13: 7718–7724.
  • Cepko, C. L., B. E. Roberts, and R. C. Mulligan 1984. Construction and applications of a highly transmissible murine retrovirus shuttle vector. Cell 84: 1053–1062.
  • Chardin, P., J. H. Camonis, N. W. Gale, L. van Aelst, J. Schlessinger, M. H. Wigler, and D. Bar-Sagi 1993. Human Sos1: a guanine nucleotide exchange factor for Ras that binds to Grb2. Science 260: 1338–1343.
  • Chen, R.-H., S. Corbalan-Garcia, and D. Bar-Sagi 1997. The role of the PH domain in the signal-dependent membrane targeting of Sos. EMBO J. 16: 1351–1359.
  • Chen, Y.-H., D. Grall, A. E. Salcini, P. G. Pelicci, J. Pouysségur, and E. Van Obberghen-Schilling 1996. Shc adaptor proteins are key transducers of mitogenic signaling mediated by the G protein-coupled thrombin receptor. EMBO J. 15: 1037–1044.
  • Coleman, R. A., and S. H. Zeisel 1996. Diacylglycerol metabolism in cellular membranes Advances in lipidology. In: Gross, R. W.337–366JAI Press, Greenwich, Conn.
  • Craig, W., R. Kay, R. L. Cutler, and P. M. Lansdorp 1993. Expression of Thy-1 on human hematopoietic progenitor cells. J. Exp. Med. 177: 1331–1342.
  • Davis, R. J. 1993. The mitogen-activated protein kinase signal transduction pathway. J. Biol. Chem. 268: 14553–14556.
  • Downward, J., J. D. Graves, P. H. Warne, S. Rayter, and D. A. Cantrell 1990. Stimulation of p21ras upon T-cell activation. Nature 346: 719–723.
  • Downward, J. 1996. Control of Ras activation. Cancer Surveys 27: 87–100.
  • Ebinu, J. O., D. A. Bottorff, E. Y. W. Chan, S. L. Stang, R. J. Dunn, and J. C. Stone 1998. RasGRP, a Ras guanyl nucleotide-releasing protein with calcium- and diacylglycerol-binding motifs. Science 280: 1082–1086.
  • Engler-Blum, G., M. Meier, J. Frank, and G. A. Muller 1993. Reduction of background problems in nonradioactive Northern and Southern blot analyses enables higher sensitivity than 32P-based hybridizations. Anal. Biochem. 210: 235–244.
  • Fam, N. P., W.-T. Fan, Z. Wang, L.-J. Zhang, H. Chen, and M. F. Moran 1997. Cloning and characterization of Ras-GRF2, a novel guanine nucleotide exchange factor for Ras. Mol. Cell. Biol. 17: 1396–1406.
  • Farnsworth, C. L., N. W. Freshney, L. B. Rosen, A. Ghosh, M. E. Greenberg, and L. A. Feig 1995. Calcium activation of Ras mediated by neuronal exchange factor Ras-GRF. Nature 376: 524–527.
  • Feig, L. A. 1994. Guanine nucleotide exchange factors: a family of positive regulators of Ras and related GTPases. Curr. Opin. Cell Biol. 6: 204–211.
  • Feig, L. A., T. Urano, and S. Cantor 1996. Evidence for a Ras/Ral signaling cascade. Trends Biochem. Sci. 21: 438–441.
  • Freshney, N. W., S. D. Goonesekera, and L. A. Feig 1997. Activation of the exchange factor Ras-GRF by calcium requires an intact Dbl homology domain. FEBS Lett. 407: 111–115.
  • Goodnight, J., H. Mischak, W. Kolch, and J. F. Mushinski 1995. Immunocytochemical localization of eight protein kinase C isozymes overexpressed in NIH 3T3 fibroblasts. J. Biol. Chem. 270: 9991–10001.
  • Gotoh, T., S. Hattori, S. Nakamura, H. Kitayama, M. Noda, Y. Takai, K. Kaibuchi, H. Matsui, O. Hatase, H. Takahashi, T. Kurata, and M. Matsuda 1995. Identification of Rap1 as a target for the Crk SH3 domain binding guanine nucleotide-releasing factor C3G. Mol. Cell. Biol. 15: 6746–6753.
  • Gotoh, T., Y. Niino, M. Tokuda, O. Hatase, S. Nakamura, M. Matsuda, and S. Hattori 1997. Activation of R-Ras by Ras-guanine nucleotide-releasing factor. J. Biol. Chem. 272: 18602–18607.
  • Graham, S. M., A. B. Vojtek, S. Y. Huff, A. D. Cox, G. J. Clark, J. A. Cooper, and C. J. Der 1996. TC21 causes transformation by Raf-independent signaling pathways. Mol. Cell. Biol. 16: 6132–6140.
  • Gulbins, E., B. Brenner, K. Schlottmann, U. Koppenhoefer, O. Linderkamp, K. M. Coggeshall, and F. Lang 1996. Activation of the Ras signaling pathway by the CD40 receptor. J. Immunol. 157: 2844–2850.
  • Harmer, S. L., and A. L. DeFranco 1997. Shc contains two Grb2 binding sites needed for efficient formation of complexes with Sos in B lymphocytes. Mol. Cell. Biol. 17: 4087–4095.
  • Hu, C. D., K. Kariya, G. Kotani, M. Shirouzu, S. Yokohama, and T. Kataoka 1997. Co-association of Rap1A and Ha-Ras with Raf-1 N-terminal region interferes with Ras-dependent activation of Raf-1. J. Biol. Chem. 272: 11702–11705.
  • Hurley, J. H., A. C. Newton, P. J. Parker, P. M. Blumberg, and Y. Nishizuka 1997. Taxonomy and function of C1 protein kinase C homology domains. Protein Sci. 6: 477–480.
  • Ikura, I. 1996. Calcium binding and conformational response in EF-hand proteins. Trends Biochem. Sci. 21: 14–17.
  • Izquierdo, M., J. Downward, J. D. Graves, and D. A. Cantrell 1992. Role of protein kinase C in T-cell antigen receptor regulation of p21ras: evidence that two p21ras regulatory pathways coexist in T cells. Mol. Cell. Biol. 12: 3305–3312.
  • Kaplan, J. M., G. Mardon, J. M. Bishop, and H. E. Varmus 1988. The first seven amino acids encoded by the v-src oncogene act as a myristylation signal: lysine 7 is a critical determinant. Mol. Cell. Biol. 8: 2435–2441.
  • Kay, R. J. Unpublished data.
  • Lai, C.-C., M. Boguski, D. Broek, and S. Powers 1993. Influence of guanine nucleotides on complex formation between Ras and CDC25 proteins. Mol. Cell. Biol. 13: 1345–1352.
  • Larrodera, P., M. E. Cornet, M. T. Diaz-Meco, M. Lopez-Barahona, I. Diaz-Laviada, P. H. Guddal, T. Johansen, and J. Moscat 1990. Phospholipase C-mediated hydrolysis of phosphatidylcholine is an important step in PDGF-stimulated DNA synthesis. Cell 61: 1113–1120.
  • Li, B.-Q., M. Subleski, N. Fusaki, T. Yamamoto, T. Copeland, G. L. Princler, H.-F. Kung, and T. Kamata 1996. Catalytic activity of the mouse guanine nucleotide exchanger mSos is activated by Fyn tyrosine kinase and the T-cell antigen receptor in T cells. Proc. Natl. Acad. Sci. USA 93: 1001–1005.
  • Li, Y.-Y., M. Baccam, S. B. Waters, J. E. Pressin, G. A. Bishop, and G. A. Koretzky 1996. CD40 ligation results in protein kinase C-independent activation of ERK and JNK in resting murine splenic B cells. J. Immunol. 157: 1440–1447.
  • Lopez-Ilasaca, M., P. Crespo, P. G. Pellici, J. S. Gutkind, and R. Wetzker 1997. Linkage of G protein-coupled receptors to the MAPK signaling pathway through PI-3 kinase γ. Science 275: 394–397.
  • Martin, T. F. J., K.-P. Hsieh, and B. W. Porter 1990. The sustained phase of hormone-stimulated diacylglycerol accumulation does not activate protein kinase C in GH3 cells. J. Biol. Chem. 265: 7623–7631.
  • Mattingly, R. R., and I. G. Macara 1996. Phosphorylation-dependent activation of the Ras-GRF/CDC25Mm exchange factor by muscarinic receptors and G-protein βγ subunits. Nature 382: 268–272.
  • Mayer, B. J., and M. J. Eck 1995. SH3 domains: minding your p’s and q’s. Curr. Biol. 5: 364–367.
  • Moolenaar, W. H., O. Kranenburg, F. R. Postuma, and G. C. M. Zondag 1997. Lysophosphatidic acid: G-protein signalling and cellular responses. Curr. Opin. Cell Biol. 9: 168–173.
  • Morrison, D. K., and R. E. Cutler 1997. The complexity of Raf-1 regulation. Curr. Opin. Cell Biol. 9: 174–179.
  • Newton, A. C. 1997. Regulation of protein kinase C. Curr. Opin. Cell Biol. 9: 161–167.
  • Oancea, E., M. N. Teruel, A. F. G. Quest, and T. Meyer 1998. Green fluorescent protein (GFP)-tagged cysteine-rich domains from protein kinase C as fluorescent indicators for diacylglycerol signalling in living cells. J. Cell Biol. 140: 485–498.
  • Osman, N., S. C. Lucas, H. Turner, and D. Cantrell 1995. A comparison of the interaction of Shc and the tyrosine kinase ZAP-70 with the T cell antigen receptor ζ chain tyrosine-based activation motif. J. Biol. Chem. 279: 13981–13986.
  • Pagano, R. E., K. J. Longmuir, and O. C. Martin 1983. Intracellular translocation and metabolism of a fluorescent phosphatidic acid analogue in cultured fibroblasts. J. Biol. Chem. 258: 2034–2040.
  • Park, W., R. D. Mosteller, and D. Broek 1994. Amino acid residues in the CDC25 guanine nucleotide exchange factor critical for interaction with Ras. Mol. Cell. Biol. 14: 8117–8122.
  • Pear, W. S., G. P. Nolan, M. L. Scott, and D. Baltimore 1993. Production of high-titer helper-free retroviruses by transient transfection. Proc. Natl. Acad. Sci. USA 90: 8392–8396.
  • Pyszniak, A. M., C. A. Welder, and F. Takei 1994. Cell surface distribution of high-avidity LFA-1 detected by soluble ICAM-1-coated microspheres. J. Immunol. 152: 5241–5249.
  • Qian, X., W. C. Vass, A. G. Papageorge, P. H. Anborgh, and D. R. Lowy 1998. N-terminus of Sos1 Ras exchange factor: critical roles for the Dbl and pleckstrin homology domains. Mol. Cell. Biol. 18: 771–778.
  • Quilliam, L. A., R. Khosravi-Far, S. Y. Huff, and C. J. Der 1995. Guanine nucleotide exchange factors: activators of the Ras superfamily of proteins. Bioessays 17: 395–404.
  • Robinson, M. J., and M. H. Cobb 1997. Mitogen-activated protein kinase pathways. Curr. Opin. Cell Biol. 9: 180–186.
  • Rodriguez-Viciana, P., P. H. Warne, A. Khwaja, B. M. Marte, D. Pappin, P. Das, M. D. Waterfield, A. Ridley, and J. Downward 1997. Role of phosphatidylinositol 3-OH kinase in cell transformation and control of the actin cytoskeleton by Ras. Cell 89: 457–467.
  • Saxton, T. M., I. van Oostveen, D. Bowtell, R. Aebersold, and M. R. Gold 1994. B cell antigen receptor cross-linking induces phosphorylation of the p21ras oncoprotein activators SHC and mSos1 as well as assembly of complexes containing SHC, GRB-2, mSos1, and a 145-kDa tyrosine-phosphorylated protein. J. Immunol. 153: 623–636.
  • Shou, C., C. L. Farnsworth, B. G. Neel, and L. A. Feig 1992. Molecular cloning of cDNAs encoding a guanine-nucleotide-releasing factor for Ras p21. Nature 258: 351–358.
  • Smit, L., G. van der Horst, and J. Borst 1996. Sos, Vav, and C3G participate in B cell receptor-induced signaling pathways and differentially associate with Shc-Grb2, Crk, and Crk-L adaptors. J. Biol. Chem. 271: 8564–8569.
  • Treisman, R. 1996. Regulation of transcription by MAP kinase cascades. Curr. Opin. Cell Biol. 8: 205–215.
  • Wang, W., E. M. C. Fisher, Q. Jia, J. M. Dunn, E. Porfiri, J. Downward, and S. E. Egan 1995. The Grb2 binding domain of mSos1 is not required for downstream signal transduction. Nat. Genet. 10: 294–300.
  • Whitehead, I., H. Kirk, and R. Kay 1995. Expression cloning of oncogenes by retroviral transfer of cDNA libraries. Mol. Cell. Biol. 15: 704–710.
  • Zhang, G., M. G. Kazanietz, P. M. Blumberg, and J. H. Hurley 1995. Crystal structure of the Cys2 activator-binding domain of protein kinase Cδ in complex with phorbol ester. Cell 81: 917–924.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.