51
Views
384
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Aberrant Recruitment of the Nuclear Receptor Corepressor-Histone Deacetylase Complex by the Acute Myeloid Leukemia Fusion Partner ETO

, , , , &
Pages 7185-7191 | Received 01 Jul 1998, Accepted 03 Sep 1998, Published online: 28 Mar 2023

REFERENCES

  • Alland, L., R. Muhle, H. Hou, J. Potes, L. Chin, N. Schreiber-Agus, and R. A. DePinho 1997. Role for N-CoR and histone deacetylase in Sin3-mediated transcriptional repression. Nature 387: 49–55.
  • Ayer, D. E., Q. A. Lawrence, and R. N. Eisenman 1995. Mad-Max transcriptional repression is mediated by ternary complex formation with mammalian homologs of yeast repressor Sin3. Cell 80: 767–776.
  • Bae, S. C., E. Ogawa, M. Maruyama, H. Oka, M. Satake, K. Shigesada, N. A. Jenkins, D. J. Gilbert, N. G. Copeland, and Y. Ito 1994. PEBP2 alpha B/mouse AML1 consists of multiple isoforms that possess differential transactivation potentials. Mol. Cell. Biol. 14: 3242–3252.
  • Britos-Bray, M., and A. D. Friedman 1997. Core binding factor cannot synergistically activate the myeloperoxidase proximal enhancer in immature myeloid cells without c-Myb. Mol. Cell. Biol. 17: 5127–5135.
  • Brownell, J. E., J. Zhou, T. Ranalli, R. Kobayashi, D. G. Edmondson, S. Y. Roth, and C. D. Allis 1996. Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell 84: 843–851.
  • Candau, R., J. X. Zhou, C. D. Allis, and S. L. Berger 1997. Histone acetyltransferase activity and interaction with ADA2 are critical for GCN5 function in vivo. EMBO J. 16: 555–565.
  • Carmen, A. A., S. E. Rundlett, and M. Grunstein 1996. HDA1 and HDA3 are components of a yeast histone deacetylase (HDA) complex. J. Biol. Chem. 271: 15837–15844.
  • Chen, H., R. J. Lin, R. L. Schiltz, D. Chakravarti, A. Nash, L. Nagy, M. L. Privalsky, Y. Nakatani, and R. M. Evans 1997. Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and forms a multimeric activation complex with P/CAF and CBP/p300. Cell 90: 569–580.
  • Chen, J. D., and R. M. Evans 1995. A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature 377: 454–457.
  • Collins, S. J. 1998. Acute promyelocytic leukemia: relieving repression induces remission. Blood 91: 2631–2633.
  • Frank, R., H. Zhang, H. Uchida, S. Meyers, S. W. Hiebert, and S. D. Nimer 1995. AML1/ETO blocks transactivation of the GM-CSF promoter by AML1B. Oncogene 11: 2667–2674.
  • Giles, R. H., D. J. Peters, and M. H. Breuning 1998. Conjunction dysfunction: CBP/p300 in human disease. Trends Gene. 14: 178–183.
  • Grant, P. A., D. E. Sterner, L. J. Duggan, J. L. Workman, and S. L. Berger 1998. The SAGA unfolds: convergence of transcription regulators in chromatin-modifying complexes. Trends Cell Biol. 8: 193–197.
  • Grignani, F., S. DeMatteis, C. Nervi, L. Tomassoni, V. Gelmetti, M. Cioce, M. Fanelli, M. Ruthardt, F. F. Ferrara, I. Zamir, C. Seiser, F. Grignani, M. A. Lazar, S. Minucci, and P. G. Pelicci 1998. Fusion proteins of the retinoic acid receptor-α recruit histone deacetylase in promyelocytic leukaemia. Nature 391: 815–818.
  • Grignani, F., T. Kinsella, A. Mencarelli, M. Valtieri, D. Riganelli, F. Grignani, L. Lanfrancone, C. Peschle, G. P. Nolan, and P. G. Pelicci 1998. High-efficiency gene transfer and selection of human hematopoietic progenitor cells with a hybrid EBV/retroviral vector expressing the green fluorescence protein. Cancer Res. 58: 14–19.
  • Grunstein, M. 1997. Histone acetylation in chromatin structure and transcription. Nature 389: 349–352.
  • Guidez, F., S. Ivins, J. Zhu, M. Soderstrom, S. Waxman, and A. Zelent 1998. Reduced retinoic acid-sensitivities of nuclear receptor corepressor binding to PML- and PLZF-RARα underlie molecular pathogenesis and treatment of acute promyelocytic leukemia. Blood 91: 2634–2642.
  • Hassig, C. A., T. C. Fleischer, A. N. Billin, S. L. Schreiber, and D. E. Ayer 1997. Histone deacetylase activity is required for full transcriptional repression by mSin3A. Cell 89: 341–348.
  • Hassig, C. A., and S. L. Schreiber 1998. Nuclear histone acetylases and deacetylases and transcriptional regulation: HATs off to HDACs. Curr. Opin. Chem. Biol. 1: 300–308.
  • Hassig, C. A., J. K. Tong, T. C. Fleischer, T. Owa, P. G. Grable, D. E. Ayer, and S. L. Schreiber 1998. A role for histone deacetylase activity in HDAC1-mediated transcriptional repression. Proc. Natl. Acad. Sci. USA 95: 3519–3524.
  • He, L. Z., F. Guidex, C. Tribioli, D. Peruzzi, M. Ruthardt, A. Zelent, and P. P. Pandolfi 1998. Distinct interactions of PML-RARα and PLZF-RARα with co-repressors determine differential responses to RA in APL. Nat. Gen. 18: 126–135.
  • Heinzel, T., R. M. Lavinsky, T.-M. Mullen, M. Soderstrom, C. D. Laherty, J. Torchia, W.-M. Yuang, G. Brard, S. D. Ngo, J. R. Davie, E. Seto, R. N. Eisenman, D. W. Rose, C. K. Glass, and M. G. Rosenfeld 1997. A complex containing N-CoR, mSin3 and histone deacetylase mediates transcriptional repression. Nature 387: 43–48.
  • Hiebert, S. W., J. R. Downing, N. Lenny, and S. Meyers 1996. Transcriptional regulation by the t(8;21) fusion protein, AML-1/ETO. Curr. Top. Microbiol. Immunol. 211: 253–258.
  • Hong, S. H., G. David, C. W. Wong, A. Dejean, and M. L. Privalsky 1997. SMRT corepressor interacts with PLZF and with the PML-retinoic acid receptor α and PLZF-RARα oncoproteins associated with acute promyelocytic leukemia. Proc. Natl. Acad. Sci. USA 94: 9028–9033.
  • Horlein, A. J., A. M. Naar, T. Heinzel, J. Torchia, B. Gloss, R. Kurokawa, A. Ryan, Y. Kamei, M. Soderstrom, C. K. Glass, and M. G. Rosenfeld 1995. Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature 377: 397–404.
  • Kadonaga, J. T. 1998. Eukaryotic transcription: an interlaced network of transcription factors and chromatin-modifying machines. Cell 92: 307–313.
  • Kadosh, D., and K. Struhl 1998. Targeted recruitment of the Sin3-Rpd3 histone deacetylase complex generates a highly localized domain of repressed chromatin in vivo. Mol. Cell. Biol. 18: 5121–5127.
  • Kagoshima, H., K. Shigesada, M. Satake, Y. Ito, H. Miyoshi, M. Ohki, M. Pepling, and P. Gergen 1993. The Runt domain identifies a new family of heteromeric transcriptional regulators. Trends Genet. 9: 338–341.
  • Kao, H.-Y., P. Ordentlich, K. Koyano-Nakagawa, Z. Tang, M. Downes, C. R. Kintner, R. M. Evans, and T. Kadesch 1998. A histone deacetylase corepressor complex regulates the Notch signal transduction pathway. Genes Dev. 12: 2269–2277.
  • Kasten, M. M., S. Dorland, and D. J. Stillman 1997. A large protein complex containing the yeast Sin3p and Rpd3p transcriptional regulators. Mol. Cell. Biol. 17: 4852–4858.
  • Kitabayashi, I., K. Ida, F. Morohoshi, A. Yokoyama, N. Mitsuhashi, K. Shimizu, N. Nomura, Y. Hayashi, and M. Ohki 1998. The AML1-MTG8 leukemic fusion protein forms a complex with a novel member of the MTG8(ETO/CDR) family, MTGR1. Mol. Cell. Biol. 18: 846–858.
  • Kitabayashi, I., A. Yokoyama, K. Shimizu, and M. Ohki 1998. Interaction and functional cooperation of the leukemia-associated factors AML1 and p300 in myeloid cell differentiation. EMBO J. 17: 2994–3004.
  • Klampfer, L., J. Zhang, A. O. Zelenetz, H. Uchida, and S. D. Nimer 1996. The AML1/ETO fusion protein activates transcription of BCL-2. Proc. Natl. Acad. Sci. USA 93: 14059–14061.
  • Korzus, E., J. Torchia, D. W. Rose, L. Xu, R. Kurokawa, E. M. McInerney, T. M. Mullen, C. K. Glass, and M. G. Rosenfeld 1998. Transcription factor-specific requirements for coactivators and their acetyltransferase functions. Science 279: 703–707.
  • Kuo, M. H., J. Zhou, P. Jambeck, M. E. Churchill, and C. D. Allis 1998. Histone acetyltransferase activity of yeast Gcn5p is required for the activation of target genes in vivo. Genes Dev. 12: 627–639.
  • Laherty, C. D., A. N. Billin, R. M. Lavinsky, G. S. Yochum, A. C. Bush, J. M. Sun, T. M. Mullen, J. R. Davie, D. W. Rose, C. K. Glass, M. G. Rosenfeld, D. E. Ayer, and R. N. Eisenman 1998. SAP30, a component of the mSin3 corepressor complex involved in N-CoR-mediated repression by specific transcription factors. Mol. Cell. 2: 33–42.
  • Laherty, C. E., W.-M. Yang, J.-M. Sun, J. R. Davie, E. Seto, and R. N. Eisenman 1997. Histone deacetylases associated with the mSin3 corepressor mediate Mad transcriptional repression. Cell 89: 349–356.
  • Lenny, N., S. Meyers, and S. W. Hiebert 1995. Functional domains of the t(8;21) fusion protein, AML-1/ETO. Oncogene 11: 1761–1769.
  • Lin, R. J., L. Nagy, S. Inoue, W. Shao, W. H. Miller, and R. M. Evans 1998. Role of the histone deacetylase complex in acute promyelocytic leukaemia. Nature 391: 811–814.
  • Lutterbach, B, D. Sun, J. Schuetz, and S. W. Hiebert 1998. The MYND motif is required for repression of basal transcription from the multidrug resistance 1 promoter by the t(8;21) fusion protein. Mol. Cell. Biol. 18: 3604–3611.
  • Meyers, S., N. Lenny, and S. W. Hiebert 1995. The t(8;21) fusion protein interferes with AML1-B-dependent transcriptional activation. Mol. Cell. Biol. 15: 1974–1982.
  • Miyoshi, H., T. Kozu, K. Shimizu, K. Enomoto, N. Naseki, Y. Kaneko, N. Kamada, and M. Ohki 1993. The t(8;21) translocation in acute myeloid leukemia results in production of an AML1-MTG8 fusion transcript. EMBO J. 12: 2715–2721.
  • Mizzen, C. A., X. J. Yang, T. Kokubo, J. E. Brownell, A. J. Bannister, T. Owen-Hughes, J. Workman, L. Wang, S. L. Berger, T. Kouzarides, Y. Nakatani, and C. D. Allis 1996. The TAF(II)250 subunit of TFIID has histone acetyltransferase activity. Cell 87: 1261–1270.
  • Nagy, L., H.-Y. Kao, D. Chakvarkti, R. J. Lin, C. A. Hassig, D. E. Ayer, S. L. Schreiber, and R. M. Evans 1997. Nuclear receptor repression mediated by a complex containing SMRT, mSin3A, and histone deacetylase. Cell 89: 373–380.
  • Nuchprayoon, I., S. Meyers, L. M. Scott, J. Suzow, S. Hiebert, and A. D. Friedman 1994. PEBP2/CBF, the murine homolog of the human myeloid AML1 and PEBP2 beta/CBR beta proto-oncoproteins, regulates the murine myeloperoxidase and neutrophil elastase genes in immature myeloid cells. Mol. Cell. Biol. 14: 5558–5568.
  • Nucifora, G., and J. D. Rowley 1995. AML1 and the 8;21 and 3;21 translocations in acute and chronic myeloid leukemia. Blood 86: 1–14.
  • Ogryzko, V. V., R. L. Schlitz, V. Russanova, B. H. Howard, and Y. Nakatani 1996. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87: 953–959.
  • Okuda, T., Z. Cai, N. Lenny, C. J. Lyu, J. M. vanDeursen, H. Harada, and J. R. Downing 1998. Expression of a knocked-in AML1-ETO leukemia gene inhibits the establishment of normal definitive hematopoiesis and directly generates dysplastic hematopoietic progenitors. Blood 91: 3134–3143.
  • Okuda, T., J. vanDeursen, S. W. Hiebert, G. Grosveld, and J. R. Downing 1996. AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 84: 321–330.
  • Petrovick, M. S., S. W. Hiebert, A. D. Friedman, C. J. Hetherington, D. G. Tenen, and D.-E. Zhang 1998. Multiple functional domains of AML1: PU.1 and C/EBPα synergize with different regions of AML1. Mol. Cell. Biol. 18: 3915–3925.
  • Rhoades, K. L., C. J. Hetherington, J. D. Rowley, S. W. Hiebert, G. Nucifora, D. G. Tenen, and D. E. Zhang 1996. Synergistic up-regulation of the myeloid-specific promoter for the macrophage colony-stimulating factor receptor by AML1 and the t(8;21) fusion protein may contribute to leukemogenesis. Proc. Natl. Acad. Sci. USA 93: 11895–11900.
  • Roth, S. Y., and C. D. Allis 1996. Histone acetylation and chromatin assembly: a single escort, multiple dances? Cell 87: 5–8.
  • Rundlett, S. E., A. A. Carmen, R. Kobayashi, S. Bavykin, B. M. Turner, and M. Grunstein 1996. HDA1 and RPD3 are members of distinct yeast histone deacetylase complexes that regulate silencing and transcription. Proc. Natl. Acad. Sci. USA 93: 14503–14508.
  • Rundlett, S. E., A. A. Carmen, N. Suka, B. M. Turner, and M. Grunstein 1998. Transcriptional repression by UME6 involves deacetylation of lysine 5 of histone H4 by RPD3. Nature 392: 831–835.
  • Spencer, T. E., G. Jenster, M. M. Burcin, C. D. Allis, J. Zhou, C. A. Mizzen, N. J. McKenna, S. A. Onate, S. Y. Tsai, M.-J. Tsai, and B. W. O’Malley 1997. Steroid receptor coactivator-1 is a histone acetyltransferase. Nature 389: 194–198.
  • Struhl, K. 1998. Histone acetylation and transcriptional regulatory mechanisms. Genes Dev. 12: 599–606.
  • Tagami, T., L. D. Madison, T. Nagaya, and J. L. Jameson 1997. Nuclear receptor corepressors activate rather than suppress basal transcription of genes that are negatively regulated by thyroid hormone. Mol. Cell. Biol. 17: 2642–2648.
  • Taunton, J., C. A. Hassig, and S. L. Schreiber 1996. A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science 272: 408–411.
  • Torchia, J., C. Glass, and M. G. Rosenfeld 1998. Co-activators and co-repressors in the integration of transcriptional responses. Curr. Opin. Cell Biol. 10: 373–383.
  • Uchida, H., J. Zhang, and S. D. Nimer 1997. AML1A and AML1B can transactivate the human IL-3 promoter. J. Immunol. 158: 2251–2258.
  • Utley, R. T., K. Ikeda, P. A. Grant, J. Cote, D. J. Steger, A. Eberharter, S. John, and J. L. Workman 1998. Transcriptional activators direct histone acetyltransferase complexes to nucleosomes. Nature 394: 498–502.
  • Vidal, M., and R. F. Gaber 1991. RPD3 encodes a second factor required to achieve maximum positive and negative transcriptional states in Saccharomyces cerevisiae. Mol. Cell. Biol. 11: 6317–6327.
  • Wang, L., L. Liu, and S. L. Berger 1998. Critical residues for histone acetylation by Gcn5, functioning in Ada and SAGA complexes, are also required for transcriptional function in vivo. Genes Dev. 12: 640–653.
  • Westendorf, J. J., C. M. Yamamoto, N. Lenny, J. R. Downing, M. E. Selsted, and S. W. Hiebert 1998. The t(8;21) fusion product, AML-1-ETO, associates with C/EBP-alpha, inhibits C/EBP-alpha-dependent transcription, and blocks granulocytic differentiation. Mol. Cell. Biol. 18: 322–333.
  • Wong, C.-W., and M. L. Privalsky 1998. Transcriptional repression by the SMRT-mDin3 corepressor: multiple interactions, multiple mechanisms, and a potential role for TFIIB. Mol. Cell. Biol. 18: 5500–5510.
  • Xue, J.-C., E. J. Schwarz, A. Chawla, and M. A. Lazar 1996. Distinct stages in adipogenesis revealed by retinoid inhibition of differentiation after induction of PPARγ. Mol. Cell. Biol. 16: 1567–1575.
  • Yang, W.-M., C. Inouye, Y. Zeng, D. Bearss, and E. Seto 1996. Transcriptional repression by YY1 is mediated by interaction with a mammalian homolog of the yeast global repressor RPD3. Proc. Natl. Acad. Sci. USA 93: 12845–12850.
  • Yang, W.-M., Y.-L. Yao, J.-M. Sun, J. R. Davie, and E. Seto 1997. Isolation and characterization of cDNAs corresponding to an additional member of the human histone deacetylase gene family. J. Biol. Chem. 272: 28001–28007.
  • Yang, X. J., V. V. Ogryzko, J. Nishikawa, B. H. Howard, and Y. Nakatani 1996. A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A. Nature 382: 319–324.
  • Yergeau, D. A., C. J. Hetherington, Q. Wang, P. Zhang, A. H. Sharpe, M. Binder, M. Marin-Padilla, D. G. Tenen, N. A. Speck, and D. E. Zhang 1997. Embryonic lethality and impairment of haematopoiesis in mice heterozygous for an AML1-ETO fusion gene. Nat. Genet. 15: 303–306.
  • Zamir, I., J. Dawson, R. M. Lavinsky, C. K. Glass, M. G. Rosenfeld, and M. A. Lazer 1997. Cloning and characterization of a corepressor and potential component of the nuclear hormone receptor repression complex. Pro. Natl. Acad. Sci. USA 94: 14400–14495.
  • Zamir, I., H. P. Harding, G. B. Atkins, A. Hörlein, C. K. Glass, M. G. Rosenfeld, and M. A. Lazar 1996. A nuclear hormone receptor corepressor mediates transcriptional silencing by receptors with distinct repression domains. Mol. Cell. Biol. 16: 5458–5465.
  • Zhang, D. E. 1997. AML1 gene in human leukemias: dominant negative effects of the chimeric proteins over wild-type AML1. Jpn. J. Cancer Res. 88: 1234–1235.
  • Zhang, J., and M. A. Lazar. Unpublished data.
  • Zhang, J., I. Zamir, and M. A. Lazar 1997. Differential recognition of liganded and unliganded thyroid hormone receptor by retinoid X receptor regulates transcriptional repression. Mol. Cell. Biol. 17: 6887–6897.
  • Zhang, Y., R. Iratni, H. Erdjument-Bromage, P. Tempst, and D. Reinberg 1997. Histone deacetylases and SAP18, a novel polypeptide, are components of a human Sin3 complex. Cell 89: 357–364.
  • Zhang, Y., Z. W. Sun, R. Iratni, B. H. Erdjument, P. Tempst, M. Hampsey, and D. Reinberg 1998. SAP30, a novel protein conserved between human and yeast, is a component of a histone deacetylase complex. Mol. Cell. 1: 1021–1031.
  • Zhang, Y. W., S. C. Bae, G. Huang, Y. X. Fu, J. Lu, M. Y. Ahn, Y. Kanno, T. Kanno, and Y. Ito 1997. A novel transcript encoding an N-terminally truncated AML-PEPB2αB protein interferes with transactivation and blocks granulocytic differentiation of 32Dc13 myeloid cells. Mol. Cell. Biol. 17: 4133–4145.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.