50
Views
143
CrossRef citations to date
0
Altmetric
Gene Expression

Inhibition of Double-Stranded RNA-Dependent Protein Kinase PKR by Vaccinia Virus E3: Role of Complex Formation and the E3 N-Terminal Domain

, , , , , & show all
Pages 7304-7316 | Received 03 Jun 1998, Accepted 18 Aug 1998, Published online: 28 Mar 2023

REFERENCES

  • Akkaraju, G. R., P. Whitaker-Dowling, I. S. Younger, and R. Jagus 1989. Vaccinia specific kinase inhibitory factor prevents translational inhibition by double-stranded RNA in rabbit reticulocyte lysate. J. Biol. Chem. 264: 10321–10325.
  • Beattie, E., K. L. Denzler, J. Tartaglia, M. E. Perkus, E. Paoletti, and B. L. Jacobs 1995. Reversal of the interferon-sensitive phenotype of a vaccinia virus lacking E3L by expression of the reovirus S4 gene. J. Virol. 69: 499–505.
  • Beattie, E., E. Paoletti, and J. Tartaglia 1995. Distinct patterns of IFN sensitivity observed in cells infected with vaccinia K3L− and E3L− mutant viruses. Virology 210: 254–263.
  • Benkirane, M., C. Neuveut, R. F. Chun, S. M. Smith, C. E. Samuel, A. Gatignol, and K. T. Jeang 1997. Oncogenic potential of TAR RNA binding protein TRBP and its regulatory interaction with RNA-dependent protein kinase PKR. EMBO J. 16: 611–624.
  • Carpick, B. W., V. Graziano, D. Schneider, R. K. Maitra, X. Lee, and B. R. G. Williams 1997. Characterization of the solution complex between the interferon-induced, double-stranded RNA-activated protein kinase and HIV-1 trans-activating region RNA. J. Biol. Chem. 272: 9510–9516.
  • Carroll, K., O. Elroy-Stein, B. Moss, and R. Jagus 1993. Recombinant vaccinia virus K3L gene product prevents activation of double-stranded RNA-dependent, initiation factor 2α-specific protein kinase. J. Biol. Chem. 268: 12837–12842.
  • Cesareni, G., and J. A. H. Murray Plasmid vectors carrying the replication origin of filamentous single-stranded phages Genetic engineering: principals and methods In: Setlow, J. K., and A. Hollaender91987135–154Plenum Press, New York, N.Y.
  • Chang, H. W., J. C. Watson, and B. L. Jacobs 1992. The E3L gene of vaccinia virus encodes an inhibitor of the interferon-induced, double-stranded RNA-dependent protein kinase. Proc. Natl. Acad. Sci. USA 89: 4825–4829.
  • Chang, H.-W., and B. L. Jacobs 1993. Identification of a conserved motif that is necessary for binding of the vaccinia virus E3L gene products to double-stranded. Virology 194: 537–547.
  • Chang, H.-W., L. H. Uribe, and B. L. Jacobs 1995. Rescue of vaccinia virus lacking the E3L gene by mutants of E3L. J. Virol. 69: 6605–6608.
  • Chong, K. L., L. Feng, K. Schappert, E. Meurs, T. F. Donahue, J. D. Friesen, A. G. Hovanessian, and B. R. G. Williams 1992. Human p68 kinase exhibits growth suppression in yeast and homology to the translational regulator GCN2. EMBO J. 11: 1553–1562.
  • Clemens, M. J. 1996. Protein kinases that phosphorylate eIF2 and eIF2B, and their role in eukaryotic cell translational control Translational control. In: Hershey, J. W. B., M. B. Mathews, and N. Sonenberg139–172Cold Spring Harbor Laboratory Press, Plainview, N.Y.
  • Cosentino, G. P., S. Venkatesan, F. C. Serluca, S. R. Green, M. B. Mathews, and N. Sonenberg 1995. Double-stranded-RNA-dependent protein kinase and TAR RNA-binding protein form homo- and heterodimers in vivo. Proc. Natl. Acad. Sci. USA 92: 9445–9449.
  • Craig, A. W. B., G. P. Cosentino, O. Donze, and N. Sonenberg 1996. The kinase insert domain of interferon-induced protein kinase PKR is required for activity but not for interaction with the pseudosubstrate K3L. J. Biol. Chem. 271: 24526–24533.
  • Davies, M. V., H. W. Chang, B. L. Jacobs, and R. J. Kaufman 1993. The E3L and K3L vaccinia virus gene products stimulate translation through inhibition of the double-stranded RNA-dependent protein kinase by different mechanisms. J. Virol. 67: 1688–1692.
  • Dever, T. E., J. J. Chen, G. N. Barber, A. M. Cigan, L. Feng, T. F. Donahue, I. M. London, M. G. Katze, and A. G. Hinnebusch 1993. Mammalian eukaryotic initiation factor 2α kinases functionally substitute for GCN2 in the GCN4 translational control mechanism of yeast. Proc. Natl. Acad. Sci. USA 90: 4616–4620.
  • Dever, T. E., L. Feng, R. C. Wek, A. M. Cigan, T. D. Donahue, and A. G. Hinnebusch 1992. Phosphorylation of initiation factor 2α by protein kinase GCN2 mediates gene-specific translational control of GCN4 in yeast. Cell 68: 585–596.
  • Dever, T. E., R. Sripriya, J. R. McLachlin, J. Lu, J. R. Fabian, S. R. Kimball, and L. K. Miller 1998. Disruption of cellular translational control by a viral truncated eukaryotic translation initiation factor 2α kinase homolog. Proc. Natl. Acad. Sci. USA 95: 4164–4169.
  • Feilotter, H. E., G. J. Hannon, C. J. Ruddell, and D. Beach 1994. Construction of an improved host strain for two hybrid screening. Nucleic Acids Res. 22: 1502–1503.
  • Gale, M., S.-L. Tan, M. Wambach, and M. G. Katze 1996. Interaction of the interferon-induced PKR protein kinase with inhibitory proteins P58IPK and vaccinia virus K3L is mediated by unique domains: implications for kinase regulation. Mol. Cell. Biol. 16: 4172–4181.
  • Gale, M. J., M. J. Korth, N. M. Tang, S. L. Tab, D. A. Hopkins, T. E. Dever, S. J. Polyak, D. R. Gretch, and M. G. Katze 1997. Evidence that hepatitis C virus resistance to interferon is mediated through repression of the PKR protein kinase by the nonstructural 5A protein. Virology 230: 217–227.
  • Haig, D. M., C. J. McInnes, J. Thomson, A. Wood, K. Bunyan, and A. Mercer 1998. The orf virus OV20.0L gene product is involved in interferon resistance and inhibits an interferon-inducible, double-stranded RNA-dependent kinase. Immunology 93: 335–340.
  • Ho, C. K., and S. Shuman 1996. Physical and functional characterization of the double-stranded RNA binding protein encoded by the vaccinia virus E3 gene. Virology 217: 272–284.
  • Hu, J. C., E. K. O’Shea, P. S. Kim, and R. T. Sauer 1990. Sequence requirements for coiled coils: analysis with lambda repressor-GCN4 leucine zipper fusions. Science 250: 1400–1403.
  • Hunter, T., T. Hunt, R. J. Jackson, and H. D. Robertson 1975. The characteristics of inhibition of protein synthesis by double-stranded ribonucleic acid in reticulocyte lysates. J. Biol. Chem. 250: 409–417.
  • Ito, H., Y. Fukada, K. Murata, and A. Kimura 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153: 163–168.
  • Jagus, R., and M. M. Gray 1994. Proteins that interact with PKR. Biochimie 76: 779–791.
  • Kawagishi-Kobayashi, M., J. B. Silverman, T. K. Ung, and T. E. Dever 1997. Regulation of the protein kinase PKR by the vaccinia virus pseudosubstrate inhibitor K3L is dependent on residues conserved between the K3L protein and the PKR substrate eIF2α. Mol. Cell. Biol. 17: 4146–4158.
  • Kostura, M., and M. B. Mathews 1989. Purification and activation of the double-stranded RNA-dependent eIF-2 kinase DAI. Mol. Cell. Biol. 9: 1576–1586.
  • Kozak, M. 1983. Comparison of initiation of protein synthesis in procaryotes, eucaryotes, and organelles. Microbiol. Rev. 47: 1–45.
  • Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.
  • Langland, J. O., and B. L. Jacobs 1992. Cytosolic double-stranded RNA-dependent protein kinase is likely a dimer of partially phosphorylated Mr = 66,000 subunits. J. Biol. Chem. 267: 10729–10736.
  • Langland, J. O., S. M. Pettiford, B. Jiang, and B. L. Jacobs 1994. Products of the porcine N5P3 gene bind specifically to double-stranded RNA and inhibit activation of the interferon-induced protein kinase, PKR. J. Virol. 68: 3821–3829.
  • Mathews, M. B. 1993. Viral evasion of cellular defense mechanisms: regulation of the protein kinase DAI by RNA effectors. Semin. Virol. 4: 247–257.
  • McMillan, N. A., B. W. Carpick, B. Hollis, W. M. Toone, M. Zamanian-Daryoush, and B. R. G. Williams 1995. Mutational analysis of the double-stranded RNA (dsRNA) binding domain of the dsRNA-activated protein kinase, PKR. J. Biol. Chem. 270: 2601–2606.
  • Ortega, L. G., M. D. McCotter, G. L. Henry, S. J. McCormack, D. C. Thomis, and C. E. Samuel 1996. Mechanism of interferon action. Biochemical and genetic evidence for the intermolecular association of the RNA-dependent protein kinase PkR from human cells. Virology 215: 31–39.
  • Park, H., M. V. Davies, J. O. Langland, H. W. Chang, Y. S. Nam, J. Tartaglia, E. Paoletti, B. L. Jacobs, R. J. Kaufman, and S. Venkatesan 1994. TAR RNA-binding protein is an inhibitor of the interferon-induced protein kinase PKR. Proc. Natl. Acad. Sci. USA 91: 4713–4717.
  • Patel, R. C., P. Stanton, N. M. J. McMillan, B. R. G. Williams, and G. C. Sen 1995. The interferon-inducible double-stranded RNA-activated protein kinase self-associates in vitro and in vivo. Proc. Natl. Acad. Sci. USA 92: 8283–8287.
  • Patel, R. C., P. Stanton, and G. C. Sen 1996. Specific mutations near the amino terminus of double-stranded RNA-dependent protein kinase (PKR) differentially affect its double-stranded RNA binding and dimerization properties. J. Biol. Chem. 271: 25657–25663.
  • Pavitt, G. D., W. Yang, and A. G. Hinnebusch 1997. Homologous segments in three subunits of the guanine nucleotide exchange factor eIF2B mediate translational regulation by phosphorylation of eIF2. Mol. Cell. Biol. 17: 1298–1313.
  • Romano, P. R., S. R. Green, G. N. Barber, M. B. Mathews, and A. G. Hinnebusch 1995. Structural requirements for double-stranded RNA binding, dimerization, and activation of the human eIF-2α kinase DAI in Saccharomyces cerevisiae. Mol. Cell. Biol. 15: 365–378.
  • Schmedt, C., S. R. Green, L. Manche, D. R. Taylor, Y. Ma, and M. B. Mathews 1995. Functional characterization of the RNA-binding domain and motif of the double-stranded RNA-dependent protein kinase DAI (PKR). J. Mol. Biol. 249: 29–44.
  • Sharp, T. V., A. Romashko, F. Moonan, B. Joshi, G. N. Barber, and R. Jagus. The vaccinia virus E3L gene product interacts with both the regulatory and substrate binding regions of PKR: implications for PKR autoregulation. Virology, in press.
  • Sherman, F., G. R. Fink, and C. W. Lawrence 1974. Methods of yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Shors, T., and B. L. Jacobs 1997. Complementation of deletion of the vaccinia virus E3L gene by the Escherichia coli RNase III gene. Virology 227: 77–87.
  • Shors, T., K. V. Kibler, K. B. Perkins, R. Seidler-Wulff, M. P. Banaszak, and B. L. Jacobs 1997. Complementation of vaccinia virus deleted of the E3L gene by mutants of E3L. Virology 239: 269–272.
  • Sikorski, R. S., and P. Hieter 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122: 19–27.
  • St Johnston, D., N. H. Brown, J. G. Gall, and M. Jantsch 1992. A conserved double-stranded RNA-binding domain. Proc. Natl. Acad. Sci. USA 89: 10979–10983.
  • Tan, S. L., M. J. Gale, and M. G. Katze 1998. Double-stranded RNA-independent dimerization of the interferon-induced protein kinase PKR and inhibition of dimerization by the cellular P58IPK inhibitor. Mol. Cell. Biol. 18: 2431–2443.
  • Watson, J. C., H. W. Chang, and B. L. Jacobs 1991. Characterization of a vaccinia virus-encoded double-stranded RNA-binding protein that may be involved in inhibition of the double-stranded RNA-dependent protein kinase. Virology 185: 206–216.
  • Wu, S., and R. J. Kaufman 1996. Double-stranded (ds) RNA binding and not dimerization correlates with the activation of the dsRNA-dependent protein kinase (PKR). J. Biol. Chem. 271: 1756–1763.
  • Wu, S., and R. J. Kaufman 1997. A model for the double-stranded RNA (dsRNA)-dependent dimerization and activation of the dsRNA-activated protein kinase PKR. J. Biol. Chem. 272: 1291–1296.
  • Yon, J., and M. Fried 1988. Precise gene fusion by PCR. Nucleic Acids Res. 17: 4895.
  • Yuwen, H., J. H. Cox, J. W. Yewdell, J. R. Bennink, and B. Moss 1993. Nuclear localization of a double-stranded RNA-binding protein encoded by the vaccinia virus E3L gene. Virology 195: 732–744.
  • Zhu, S., P. R. Romano, and R. C. Wek 1997. Ribosome targeting of PKR is mediated by two double-stranded RNA-binding domains and facilitates in vivo phosphorylation of eukaryotic initiation factor-2. J. Biol. Chem. 272: 14434–14441.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.